
 Windows SDK Knowledge Base: Kernel
Prepared 11/17/93

 Kernel APIs

 Compiler/Runtime

 Debug Kernel

 Disk Operations

 File I/O

 Floating Point

 ISRs/TSRs/Interrupts

 Memory Management

 Memory Models

 Tasks/Instances

 ToolHelp

 WinOLDAp

THE INFORMATION IN THE MICROSOFT KNOWLEDGE BASE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND.
MICROSOFT DISCLAIMS ALL WARRANTIES EITHER EXPRESSED OR IMPLIED, INCLUDING THE WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MICROSOFT CORPORATION OR
ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL,
CONSEQUENTIAL, LOSS OF BUSINESS PROFITS, OR SPECIAL DAMAGES, EVEN IF MICROSOFT CORPORATION OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE FORGOING
EXCLUSION OR LIMITATION MAY NOT APPLY.

 Windows SDK Knowledge Base: Kernel

 Kernel APIs
 INF: Determining the Version of MS-DOS from a Windows App

 Applications Must Delete Files Created with GetTempFileName()
 INF: Information About Windows Catch and Throw Functions
 FIX: FatalAppExit() Function Missing from WINDOWS.H
 FIX: SwitchStackBack() Function Causes UAE
 PRB: GetModuleHandle and Long Path Causes UAE
 INF: Retrieving the Filename of an Application or DLL
 FIX: ExitWindows() Returns No wReturnCode to MS-DOS
 INF: Additional Documentation for GetDOSEnvironment Function
 FIX: FreeModule() Declared Incorrectly in WINDOWS.H

 Compiler/Runtime

 Debug Kernel

 Disk Operations

 File I/O

 Floating Point

 ISRs/TSRs/Interrupts

 Memory Management

 Memory Models

 Tasks/Instances

 ToolHelp

 WinOLDAp

 Windows SDK Knowledge Base: Kernel

 Kernel APIs

 Compiler/Runtime
 INF: wsprintf() %s Parameters Not Cast to LPSTR

 INF: wsprintf() Buffer Limit in Windows
 INF: QuickSort Sample Code for Windows 3.00
 INF: Compiler Switch Options for Windows Protected Mode Apps
 INF: Overcoming
 FIX: Improper Arguments to stat Function Cause UAE
 INF: Drive and Directory Manipulation in Windows
 PRWIN9105001: C Run-Time getc() Function Corrupts Data
 INF: C 6.00 -GW Switch Incompatible with Windows in Real Mode
 PRWIN9106001: Crash When frexp() in Small or Medium Model DLL

 PRB:
 INF: Implicit Casting by C Compiler Can Cause Problems
 INF: Using Near and Far Pointers with C Run-Time Functions
 INF: Windows Does Not Support OS/2 Family API Calls
 INF: Creating Streamlined Code for Protected Mode Applications
 INF: Sample Code Replaces sscanf in DLLs for Windows
 INF: Using the Linker /ALIGN Option
 PRB: SetEnvironment() Returns Incorrect Values

 Debug Kernel

 Disk Operations

 File I/O

 Floating Point

 ISRs/TSRs/Interrupts

 Memory Management

 Memory Models

 Tasks/Instances

 ToolHelp

 WinOLDAp

 Windows SDK Knowledge Base: Kernel

 Kernel APIs

 Compiler/Runtime

 Debug Kernel
 PRB: OutputDebugString() Comments Section Documentation Error

 INF: Determine Application Stack Size
 INF: An Annotated Dr. Watson Log File
 INF: Programs Crash Accessing AUX Port Under Debug Version
 PRB: Pointer Functions in MASM Can Hang Real Mode
 INF: Profiling Time Between OutputDebugString and FatalExit
 INF: Tracking Unrecoverable Application Errors Without CVW
 FIX: One Cause of FatalExit 0x0403
 FIX: One Cause of FatalExit in Debug Enhanced Mode

 FIX: UAE at Application Load Time Caused by Preload Area Size
 INF: Redirecting Debugging Information Under Windows 3.0, 3.1
 PRB: Linker Warning L4000
 FIX: Bad Extended Error Information After Critical Error
 PRB: Fatal Exit 0x00FF: MakeProcInstance for Current Instance
 PRB: KRNL386: Unable to Enter Protected Mode
 PRB: Windows FatalExit 0x0280 Error Caused by FAR WinMain
 INF: Stack Traces Under Windows 3.1 SDK Debugging Kernel
 PRB: One Cause of Fatal Exit 0x0140
 PRB: Strange UAE in Windows 3.00
 PRB: One Cause of Fatal Exit 0x001A
 INF: Checking for Invalid Global or Local Handles

 Disk Operations

 File I/O

 Floating Point

 ISRs/TSRs/Interrupts

 Memory Management

 Memory Models

 Tasks/Instances

 ToolHelp

 WinOLDAp

 Windows SDK Knowledge Base: Kernel

 Kernel APIs

 Compiler/Runtime

 Debug Kernel

 Disk Operations
 INF: GetDriveType DRIVE_REMOVEABLE Documentation Error

 INF: Writing Volume Labels to Floppy and Hard Disks

 File I/O

 Floating Point

 ISRs/TSRs/Interrupts

 Memory Management

 Memory Models

 Tasks/Instances

 ToolHelp

 WinOLDAp

 Windows SDK Knowledge Base: Kernel

 Kernel APIs

 Compiler/Runtime

 Debug Kernel

 Disk Operations

 File I/O
 PRB: Windows Applications Cannot Share File Handles

 FIX: sopen() Fails When Called from a Windows DLL
 INF: Limits on the Number of Open Files
 INF: File Manager's Mechanism for Sensing File System Changes
 INF: Windows OpenFile Function vs. C Run-Time
 BUG: sopen() Fails When Called From a Windows DLL

 INF: Updating Cached Private Profiles (.INI Files)
 INF: Handling Critical Errors in a Windows Application
 INF: Opening Files, Compatibility Mode and Windows
 INF: Using OpenFile with Sharing and Inheritance Bits
 INF: Application Dynamically Links to a DLL Using a Class
 PRB: C Run-Time locking Function Causes Sharing Violations
 INF: File Input/Output for Windows-Based Applications
 INF: LZEXPAND.DLL API Documentation
 INF: No MS-DOS Extended Error Info for Windows File Functions
 PRB: Creating File with Exclusive Access Allows Concurrent Use
 INF: Determining That SHARE Is Loaded Under Microsoft Windows
 FIX: SetHandleCount() Causes UAE or Hang

 BUG: OpenFile Function Fails on Novell Temp Drive
 SAMPLE: Reading the Boot Sector of a Drive
 PRB: File Handles Cannot Be Shared Between Programs or DLLs
 INF: Failure to Load Resources When All File Handles Are Used
 INF: Do Not Use the MS-DOS APPEND Utility in Windows
 INF: Incomplete Description of SetErrorMode() Function
 BUG: OpenFile Fails When UNC Server Name Longer than 11 Chars
 INF: Sharing Files with Windows for Workgroups Clients
 PRB: File Attributes/Date/Time Fail to Set on Open File
 INF: The
 INF: How OF_SHARE Modes Affect Opening Files
 INF: Windows Code Module to Delete Files

 Floating Point

 ISRs/TSRs/Interrupts

 Memory Management

 Memory Models

 Tasks/Instances

 ToolHelp

 WinOLDAp

 Windows SDK Knowledge Base: Kernel

 Kernel APIs

 Compiler/Runtime

 Debug Kernel

 Disk Operations

 File I/O

 Floating Point
 PRB: DLL Function Returns Float or Double Value Incorrectly

 INF: Applications and the Math Coprocessor Under Windows

 ISRs/TSRs/Interrupts

 Memory Management

 Memory Models

 Tasks/Instances

 ToolHelp

 WinOLDAp

 Windows SDK Knowledge Base: Kernel

 Kernel APIs

 Compiler/Runtime

 Debug Kernel

 Disk Operations

 File I/O

 Floating Point

 ISRs/TSRs/Interrupts
 INF: EMS Support in Windows Version 3.00 and 3.10

 Memory Management

 Memory Models

 Tasks/Instances

 ToolHelp

 WinOLDAp

 Windows SDK Knowledge Base: Kernel

 Kernel APIs

 Compiler/Runtime

 Debug Kernel

 Disk Operations

 File I/O

 Floating Point

 ISRs/TSRs/Interrupts

 Memory Management
 INF: How to Get a Pointer to the Stack

 INF: How Windows Resolves Far Calls When Movable Flag Is Used
 INF: Global Lock Count Changes in Windows 3.x

 INF: WINMEM32 Not Version Dependent
 INF: Heap Placement in Memory
 INF: Overview of How to Share Memory Between Applications
 INF: Accessing Physical Memory Using Kernel Exported Selectors
 INF: Minimizing Lock and Unlock Calls in Protected Mode
 INF: Real Mode Not Supported by Windows 3.1
 INF: Shrinking Heap Space
 INF: Speed Differences Between WIN /3, WIN /2, and WIN /R
 FIX: GlobalReAlloc() Fails in Enhanced Mode
 INF: Validating Local Handles
 INF: Allocation Limit on WINMEM32 Global32Alloc() Function
 PRB: Segment Was Discardable Under 3.0 Notification

 INF: GetCodeInfo() Documented Incorrectly
 INF: Implementing Linked Lists with Handles in Windows
 INF: Windows 3.1 Standard Mode and the VCPI
 INF: Windows Enhanced Mode Allocation Limit 16 MB Minus 64K
 INF: XMS Calls Under Windows 3.1
 BUG: GlobalPageLock Moves Memory Fixed by GlobalFix
 INF: Segment and Handle Limits and Protected Mode Windows
 PRB: XMS Version Information in MS-DOS Window Incorrect
 INF: Shorthand Notation for Memory Allocation Flags
 INF: Appropriate Uses of WINMEM32
 INF: What EMS Means to Developers
 FIX: GlobalReAlloc() Shrinks >1 MB Block to <1 MB UAE

 INF: Corrected WINMEM32.DLL Available in Software Library
 INF: Maximizing the Use of Available Memory in Windows
 INF: Checksums for Windows Executable Image Files

 FIX: Microsoft Windows Page Locks GMEM_FIXED Memory
 PRWIN9106004: Memory Allocation in Enhanced Mode Hang or UAE
 INF: Information About Headings and Labels in HEAPWALK
 INF: Future Direction of WINMEM32
 INF: Using Memory Below 1 Megabyte
 Sample: Global Heap Functions
 INF: DPMI Specification Available from Intel
 INF: Using GlobalNotify to Implement Real Mode Virtual Memory
 INF: Solving the

 INF: Determining Free Memory in Windows Enhanced Mode
 INF: Demand Paging MS-DOS Applications
 PRB: GlobalUnlock Can Cause Fatal Exit 0x02F0
 PRB: Reset A20 Bit Set During DPMI Simulate Interrupt Crash
 PRB: Protected-Mode GlobalCompact Return Is Not Free Memory
 INF: Windows Applications Should Not Use EMS Memory
 INF: Memory Access Methods for Protected Mode Applications
 INF: Rules for Using Far Pointers to Memory Objects
 INF: GlobalReAlloc() and GMEM_ZEROINIT Clarified

 Memory Models

 Tasks/Instances

 ToolHelp

 WinOLDAp

 Windows SDK Knowledge Base: Kernel

 Kernel APIs

 Compiler/Runtime

 Debug Kernel

 Disk Operations

 File I/O

 Floating Point

 ISRs/TSRs/Interrupts

 Memory Management

 Memory Models
 INF: Large Model and Windows 3.0 Protected Mode

 INF: C Run-Time Functions Can Use Far Pointers in Medium Model
 INF: Windows 3.0 Does Not Support Static Data Segments > 64K

 INF: Sample Code Unlocks Large-Model Extra Data Segments
 INF: Using Large Memory Model, Microsoft C/C++, & Windows 3.1
 FIX: Using fputc() or fgetc() in Large Model DLL UAEs

 Tasks/Instances

 ToolHelp

 WinOLDAp

 Windows SDK Knowledge Base: Kernel

 Kernel APIs

 Compiler/Runtime

 Debug Kernel

 Disk Operations

 File I/O

 Floating Point

 ISRs/TSRs/Interrupts

 Memory Management

 Memory Models

 Tasks/Instances
 INF: Differences Between Task Handles and Instance Handles
 INF: HANDLEs Returned by GetModuleHandle and LoadLibrary

 INF: Retrieving the Names of Simultaneous Tasks Under Windows
 INF: Heap and Stack Usage Within Windows
 INF: Why WinExec() Returns Error Code 8: Insufficient Memory
 INF: Windows: Nonpreemptive vs. Preemptive Scheduling
 INF: How to Determine When Another Application Has Finished
 INF: The Purpose of WINSTUB in Windows SDK
 INF: Sample Code Spawns Task and Waits for its Termination
 BUG: GetModuleFileName Returns Relative File Path
 PRB: Avoiding
 INF: SpawnAndWait DLL Provides Asynchronous Spawn Function
 FIX: Application with No Exports Crashes Under Windows 3.0

 INF: Callback Functions in Multiple Instance Applications
 INF: Passing Modified Environments to Child Processes

 ToolHelp

 WinOLDAp

 Windows SDK Knowledge Base: Kernel

 Kernel APIs

 Compiler/Runtime

 Debug Kernel

 Disk Operations

 File I/O

 Floating Point

 ISRs/TSRs/Interrupts

 Memory Management

 Memory Models

 Tasks/Instances

 ToolHelp
 INF: Spawn an Application and Wait Sample Code

 INF: Using TOOLHELP to Determine Free System Resources
 INF: Retrieving Application Exit Code in MS-DOS Window
 INF: Sample Windows Application Produces Stack Trace
 PRB: Error in the THSAMPLE Sample Application
 INF: Chaining NotifyRegister Callbacks Issuing Notifications
 INF: Sample Windows Application to Unload DLLs from Memory

 WinOLDAp

 Windows SDK Knowledge Base: Kernel

 Kernel APIs

 Compiler/Runtime

 Debug Kernel

 Disk Operations

 File I/O

 Floating Point

 ISRs/TSRs/Interrupts

 Memory Management

 Memory Models

 Tasks/Instances

 ToolHelp

 WinOLDAp
 INF: MS-DOS Application Characteristics Under Windows

 FIX: Program Execution Halted Until Key Press
 PRB: Activating Full-Screen DOS App from Icon in Enhanced Mode
 INF: Calculating Memory Requirements for DOS Applications
 INF: Determining Windows Version, Mode from MS-DOS App
 INF: Keeping a DOS Window Active Under Standard and Real Mode
 INF: Determining What Mode and Version of Windows Is Running
 INF: Full-Screen DOS Apps Slow Timer Messages in Enhanced Mode
 INF: Requested Contents for Windows Problem Reports

INF: Determining the Version of MS-DOS from a Windows App
Article ID:
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

There are at least three ways for an application developed for Windows
version 3.x to determine the version of MS-DOS that is running on the
system. Both the first and second methods require placing a few lines
of inline assembler code into the application. The second method
requires MS-DOS version 5.0. The third method requires changing the
GetVersion function prototype in the WINDOWS.H header file
distributed with the Microsoft Windows Software Development Kit (SDK)
version 3.0 (this change is not necessary if the Microsoft Windows
SDK version 3.1 is being used).

Even though it is necessary to modify the Windows 3.0 header file, the
third method is the most removed from the hardware and can be
considered the most portable. The other two methods assume an
underlying Intel 80x86 architecture (or emulation).

More Information:

Method 1

This method requires only a few lines of inline assembler code and a
call to the DOS3Call function. The following code fragment
demonstrates this technique:

 VOID FAR PASCAL DOS3Call(VOID); // Use instead of INT 21h
 int nMajor; // MS-DOS major version
 int nMinor; // MS-DOS minor version, revision
 int nOEMNumber; // OEM serial number
 static char szUserMsg[80]; // holds user message

 _asm
 {
 mov ax, 0x3000 ; Get MS-DOS version
 call DOS3Call
 mov nMajor, al ; Save major number
 mov nMinor, ah ; Save minor version number
 mov nOEMNumber, bh ; Save OEM Serial number
 }

 wsprintf(szUserMsg,
 "Running on MS-DOS %d.%d OEM Serial Number %d",
 nMajor, nMinor, nOEMNumber);
 MessageBox(hWnd, szUserMsg, "MS-DOS Version", MB_OK);

Method 2

This method requires only a few lines of inline assembler code and a
call to the DOS3Call function. Additionally, it requires that MS-DOS
version 5.0 is running on the system. While this function does not
report the OEM serial number, it does report whether MS-DOS is in ROM
or in HMA (the High Memory Area). Also the MS-DOS version returned by
this method is unaffected by the SETVER command. The following code
fragment demonstrates this technique:

 #define DOSINROM 0x08
 #define DOSINHMA 0x10

 int nMajor = 0;
 int nMinor = 0;
 int nRevision = 0;
 int nDOSFlag = 0;
 static char msg[120];

 _asm
 {
 mov ax, 0x3306 ; Get MS-DOS version
 call DOS3Call
 mov nMajor, bl ; Save major number
 mov nMinor, bh ; Save minor version number
 mov nRevision, dl ; Revision num in low 3 bits
 mov nDOSFlag, dh ; MS-DOS version flags
 }

 wsprintf(msg,
 "Running on MS-DOS %s %s version %d.%d revision %d ",
 (LPSTR) (nDOSFlag & DOSINROM ? "in ROM " : ""),
 (LPSTR) (nDOSFlag & DOSINHMA ? "in HMA " : ""),
 nMajor, nMinor, (nRevision & 0x03));
 MessageBox(hWnd, msg, "MS-DOS Version", MB_OK);

Important Note for Methods 1 and 2

The DOS3Call function must be prototyped. In assembly language, the
appropriate prototype is as follows:

 extrn DOS3CALL: far

Use the DOS3Call fucntion instead of making a direct call to MS-DOS
INT 21h. The DOS3Call function runs a little faster than the equivalent
INT 21h call under Windows and it ensures that the interrupt will be
handled correctly under Windows.

Method 3

The last method involves making a slight modification to the Windows SDK
version 3.0 header file, WINDOWS.H. To retrieve the MS-DOS version,
change the return type in the function prototype of the GetVersion
function call from a WORD to a DWORD. The modified prototype should
resemble the following:

 DWORD FAR PASCAL GetVersion(void);

It is not necessary to make the above change to the version of
the WINDOWS.H file included with the Windows SDK version 3.1.

The following code fragment demonstrates how to use the GetVersion
function to display both the MS-DOS version and the Windows version
numbers:

 DWORD dwVersion;
 char szUserMsg[80];

 dwVersion = GetVersion();
 wsprintf(szUserMsg,
 "Window version %d.%d. MS-DOS version %d.%d",
 LOBYTE(LOWORD(dwVersion)), HIBYTE(LOWORD(dwVersion)),
 HIBYTE(HIWORD(dwVersion)), LOBYTE(HIWORD(dwVersion)));

 MessageBox(hWnd, szUserMsg, "GetVersion", MB_OK);

Additional reference words: 3.00 3.10 3.x
KBCategory:
KBSubcategory: KrApiMisc

Applications Must Delete Files Created with GetTempFileName()
Article ID: Q69753
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

When it is necessary for an application to create a temporary file, it
is highly recommended that the GetTempFileName() function be used to
provide the name for the file. Temporary files created by this method
must be deleted by the application before the application terminates.
Windows will not automatically delete these files on application
termination.

More Information:

The "Note" on page 13 of the "Microsoft Windows User's Guide" version
3.0 manual states:

 ...some applications may create temporary files. These filenames
 generally begin with a tilde character (~) and end with the .TMP
 extension.... If you quit Windows as described in the preceding
 procedure, any temporary files are automatically deleted....

To a Windows programmer, this note may seem to imply that the
GetTempFileName() API will create a file that will be automatically
deleted when Windows shuts down. This is not true; the application
must delete its temporary files.

If each application destroys all its temporary files as it shuts down,
from the end user's perspective, the files ARE automatically deleted,
because the user does not delete them with the File Manager. However,
it is each application, not Windows, that performs the delete.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrApiMisc

INF: Information About Windows Catch and Throw Functions
Article ID: Q11926
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The following information describes what the Windows functions Catch
and Throw do.

Catch and Throw are analogous to the C functions setjmp() and
longjmp(). They are used to save or restore the current environment
(including the state of all system registers and the instruction
counter) for Windows.

Additional reference words: 2.x 3.00
KBCategory:
KBSubcategory: KrApiMisc

FIX: FatalAppExit() Function Missing from WINDOWS.H
Article ID: Q70806
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9103014

SYMPTOMS
 When creating an application that uses the FatalAppExit function,
 the application fails to compile.

CAUSE
 The prototype for the FatalAppExit function is missing from
 WINDOWS.H.

RESOLUTION
 Microsoft has confirmed this to be a problem in Windows version
 3.0. Add the following declaration to the top of each module that
 uses the FatalAppExit function:

 void FAR PASCAL FatalAppExit(WORD, LPSTR);

 This problem was corrected in Windows version 3.1.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrApiMisc

FIX: SwitchStackBack() Function Causes UAE
Article ID: Q70808
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9103016

SYMPTOMS
 Using the SwitchStackBack function causes an unrecoverable
 application error (UAE).

STATUS
 Microsoft has confirmed this to be a problem in Windows version
 3.0. There is no way to work around this problem under Windows 3.0
 except to avoid using the SwitchStackTo and SwitchStackBack
 functions.

 This problem was corrected in Windows version 3.1.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrApiMisc

PRB: GetModuleHandle and Long Path Causes UAE
Article ID: Q71148
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

SYMPTOMS
 When an application calls the GetModuleHandle function and
 specifies a fully qualified path longer than 63 characters, an
 unrecoverable application error (UAE) occurs.

RESOLUTION
 In Microsoft Windows version 3.0, the GetModuleHandle function uses
 a 64 character internal buffer. In Windows 3.1, this buffer has
 been extended to 128 characters. Specifying a longer string
 overflows the buffer and causes the UAE.

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrApiMisc

INF: Retrieving the Filename of an Application or DLL
Article ID: Q72385
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

In the Microsoft Windows environment, the GetModuleFileName function
provides the filename of the executable file that corresponds to a
given module instance handle or data instance handle.

More Information:

GetModuleFileName retrieves the full path of an application or a
dynamic-link library (DLL). Specify the instance handle or module
handle of the executable hModule parameter. The syntax of this
function is:

 int GetModuleFileName(HANDLE hModule, LPSTR lpFilename, int nSize);

The hModule parameter identifies the module or instance handle,
lpFilename points to the buffer to receive the file name, and nSize
specifies the buffer size.

When Windows launches an application, its instance handle is a
parameter to WinMain. For a DLL, the instance handle is a parameter to
LibMain. The instance handle is also available through the GetWindow
function, as follows:

 // hWnd is a handle to any one of the target
 // executable file's windows or controls.
 hAppInstance = GetWindowWord(hWnd, GWW_HINSTANCE);

 nPathLength = GetModuleFileName(hAppInstance,
 (LPSTR)szPath, PATH_LENGTH);

The GetModuleHandle function provides the module handle for a
specified module. For example, if Microsoft Excel is loaded, the full
path to the Excel executable file is available through the following
code:

 // "EXCEL" can be used instead of "EXCEL.EXE".
 hModule = GetModuleHandle("EXCEL");

 nPathLength = GetModuleFileName(hModule,
 (LPSTR)szPath, PATH_LENGTH);

Given a handle to a window or control in an application, the
GCW_HMODULE parameter to the GetClassWord function provides the
application's module handle.

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrApiMisc

FIX: ExitWindows() Returns No wReturnCode to MS-DOS
Article ID: Q72461
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9103026

SYMPTOMS
 When an application calls the ExitWindows function with the
 wReturnCode parameter set to a value other than zero, MS-DOS
 receives an "errorlevel" equal to zero after Windows terminates.

STATUS
 Microsoft has confirmed this to be a problem in Windows version
 3.0. This problem was corrected in Windows version 3.1.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrApiMisc

INF: Additional Documentation for GetDOSEnvironment Function
Article ID: Q89568
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

Add the following comment to the documentation for the
GetDOSEnvironment function on page 366 of the Microsoft Windows
Software Development Kit (SDK) "Programmer's Reference, Volume 2:
Functions" manual:

 If the TEMP MS-DOS environment variable points to an invalid
 directory, the GetDOSEnvironment function removes the TEMP
 environment variable from the returned environment string and
 replaces its contents with "x" characters.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrApiMisc

FIX: FreeModule() Declared Incorrectly in WINDOWS.H
Article ID: Q77478

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

In the WINDOWS.H header file, the FreeModule() function is declared to
return a BOOL value. This is incorrect. As documented on page 4-144 of
the "Microsoft Windows Software Development Kit Reference Volume 1,"
the correct declaration for FreeModule is as follows:

 void FreeModule(HANDLE)

Microsoft has confirmed this to be a problem in the WINDOWS.H header
file for the Windows SDK for Windows 3.0. This problem was corrected
in the WINDOWS.H file for the Windows SDK for Windows 3.1.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrApiMisc

INF: wsprintf() %s Parameters Not Cast to LPSTR
Article ID: Q64759

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 versions 3.0 and 3.1
--

Unrecoverable application errors (UAEs) can result from improperly
using the wsprintf() function. Any parameter passed to wsprintf that
corresponds to an %s format string MUST be cast to a LPSTR.

The documentation for wsprintf() in the "Microsoft Windows Software
Development Kit Reference Volume 1" version 3.0 manual states:

 Sequence Meaning
 -------- -------

 s Insert a string argument referenced by a long
 pointer. The argument corresponding to this
 sequence MUST be passed as a long pointer (LPSTR).

Wsprintf() is a function with a variable number of parameters.
Therefore, it must be prototyped using the following C calling
convention for a variable number of arguments:

 int FAR cdecl wsprintf(LPSTR, LPSTR,...);

Because the only type information in the prototype describes the
output buffer and the format string, the C compiler cannot perform
implicit casts on the other parameters at compile time. Normally, when
a near pointer (char *) is used as an argument to a function requiring
a LPSTR, the compiler will implicitly cast the (char *) to LPSTR, or
(char far *).

Because the compiler cannot cast any of the additional parameters, in
small and medium model programs, any string pointer that is not
explicitly cast FAR will be passed to wsprintf() as a near pointer.
wsprintf() attempts to retrieve a far pointer from the stack, which
results in an invalid pointer and an unrecoverable application error.

The following two code fragments show incorrect and correct usage of
%s fields within wsprintf():

//INCORRECT use of a near pointer. Assume small or medium model.

 {
 char sz[30]; //sz is a NEAR pointer.
 char szOut[50]; //szOut is also NEAR
 LPSTR szFar = sz; //szFar is FAR
 .
 .
 .

 /*
 * Because it is the output buffer, szOut is implicitly cast to a
 * LPSTR. However, sz is pushed on the stack as a NEAR pointer,
 * which wsprintf will pop as a FAR pointer.
 * This call will cause a UAE.
 */
 wsprintf(szOut, "sz=%s", sz);

 /*
 * This call will succeed since szFar is already a LPSTR.
 */
 wsprintf(szOut, "sz=%s", szFar);
 .
 .
 .
 }

//CORRECT--

 {
 char sz[30]; //sz is a NEAR pointer.
 char szOut[50]; //szOut is also NEAR
 LPSTR szFar = sz; //szFar is FAR
 .
 .
 .
 /*
 * Because it is the output buffer, szOut is implicitly cast to a
 * LPSTR. Due to the explicit cast, sz is pushed on the stack
 * as a FAR pointer. This call will succeed.
 */
 wsprintf(szOut, "sz=%s", (LPSTR)sz);

 /*
 * This call will succeed since szFar is already an LPSTR.
 * The cast is redundant, but it's free insurance.
 */
 wsprintf(szOut, "sz=%s", (LPSTR)szFar);
 .
 .
 .
 }

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrComplrWsprintf

INF: wsprintf() Buffer Limit in Windows
Article ID: Q77255

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.0
 and 3.1
 - Microsoft Win32 Software Development Kit for Windows NT version 3.1
--

The wsprintf(lpOutput, lpFormat [, argument] ...) and wvsprintf()
functions format and store a series of characters and values in a
buffer specified by the first parameter, lpOutput. This buffer is
limited to 1K (1024 bytes); in other words, the largest buffer that
wsprintf can use is 1K.

If an application tries to use a buffer larger than 1K, the string
will be truncated automatically to a length of 1K.
Additional reference words: 3.00 3.10 3.x
KBCategory:
KBSubcategory: KrComplrWsprintf

INF: QuickSort Sample Code for Windows 3.00
Article ID: Q64077
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

QSRTWIN is a file in the Software/Data Library that demonstrates using
the qsort() function in the C run-time library in an application
developed for Windows version 3.0.

QSRTWIN can be found in the Software/Data Library by searching on the
word QSRTWIN, the Q number of this article, or S12662. QSRTWIN was
archived using the PKware file-compression utility.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrComplrOthrfunc

INF: Compiler Switch Options for Windows Protected Mode Apps
Article ID: Q68801
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

If an application is always to be run under one of Windows' protected
modes (standard mode or 386 enhanced mode), you can greatly simplify
the function prolog and epilog code, thus producing smaller and faster
application code. The Microsoft C Compiler adds the normal function
prolog and epilog to far functions when the -Gw option is specified on
the compiler command line. However, this prolog and epilog code is
only required by functions that are exported from the application.

The standard prolog and epilog code is required for exported functions
so that the compiler will generate code to restore the DS register to
the data segment appropriate for the function and to establish a stack
frame that Windows recognizes when it inspects and modifies the stack.
This process is known as "walking" the stack and takes place whenever
memory objects are moved in real mode Windows.

In a protected mode, once the DS register is restored by an exported
function, it will not change. Thus, nonexported functions called from
within an exported function need not modify the DS register.
Similarly, code selectors never change, so Windows will not walk the
stack. This eliminates the need for any special stack frame.
Therefore, with nonexported functions in protected-mode-only
applications, the -Gw switch is not required.

More Information:

Please note that applications compiled without the -Gw switch will NOT
run in Windows real mode. In real mode, the DS register may change and
Windows may walk the stack at any time. Thus, the special stack frame
is required.

The Microsoft C Compiler version 6.00 introduces a new option switch,
-GW, that is designed to produce smaller prolog and epilog code for
nonexported functions in real mode applications. Unfortunately, using
this option switch in Microsoft C version 6.00 causes the compiler to
generate incorrect code. Microsoft has confirmed this to be a problem
in C version 6.00. We are researching this problem and will post new
information here as it becomes available.

Warning: The special stack frame created by the -Gw switch is used by
most debugging tools. Prolog code for FAR calls increments the BP
register by one when entered, making BP odd. Windows fatal exit
processing, stack trace listing in CodeView for Windows, and some
profilers depend on the odd/even characteristics of the BP register
stored in the stack frame to properly back-trace (walk) the stack.
Without a proper function prolog, functions that rely on this will not

work as documented.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrComplrSwitch

INF: Overcoming
Article ID: Q69898
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

SYMPTOMS
 Code that is compiled using the Microsoft C compiler's warning
 level 3 (/W3) or higher and that calls functions through FARPROC
 pointers causes the C compiler to report warning C4071, "No
 Function Prototype Given."

CAUSE
 Pointers to functions are commonly used when an application
 explicitly loads dynamic-link libraries (DLLs) through the Windows
 LoadLibrary function. Function pointers declared with FARPROC do
 not inherit function prototype information.

RESOLUTION
 Modify the function pointers declarations to include function
 prototype information.

More Information:

The following code sample uses the generic FARPROC far-pointer-to-
function data type. Compiling the code with Microsoft C at warning
level 3 or higher results in a C4071 warning:

 FARPROC lpfnErrorProc;
 lpfnErrorProc = GetProcAddress(hModule, MAKEINTRESOURCE(1));
 (*lpfnErrorProc)(hWnd, (LPSTR)"Error Message");

However, the following code sample defines custom far-pointer-to-
function data types which provide information about the function
arguments. This code does not produce the warning:

 // typedef declarations
 typedef VOID FAR PASCAL FNERRORPROC(HWND, LPSTR);
 typedef FNERRORPROC FAR *LPFNERRORPROC;

 // variable declaration
 LPFNERRORPROC lpfnErrorProc;

 // variable assignment and indirect function call
 lpfnErrorProc = GetProcAddress(hModule, MAKEINTRESOURCE(1));
 (*lpfnErrorProc)(hWnd, (LPSTR)"Error Message");

Additional reference words: 3.00 3.10 SR# G910211-88 MICS3 R3.1
KBCategory:
KBSubcategory: KrComplrOthrfunc

FIX: Improper Arguments to stat Function Cause UAE
Article ID: Q70804
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9103012

SYMPTOMS
 If the stat function is not passed the name of a valid file, the
 application experiences an unrecoverable application error (UAE).

STATUS
 Microsoft has confirmed this to be a problem in the C run-time
 libraries provided with the Windows Software Development Kit
 version 3.0. This problem has been corrected in the libraries
 provided with the Microsoft C/C++ Development System for Windows
 version 7.0.

Additional reference words: 3.00 7.00
KBCategory:
KBSubcategory: KrComplrOthrfunc

INF: Drive and Directory Manipulation in Windows
Article ID: Q71760
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

To get or set the current drive or directory in an application
developed for the Microsoft Windows environment, use functions
provided by the Microsoft C run-time library. The functions listed
below are compatible with Windows and are documented in the "Microsoft
C Reference" version 6.0 and in the associated QuickHelp on-line help
file. Some of the functions listed below are not available in
Microsoft C version 5.1.

Note: Any time an application gets or sets the current drive, it
should get or set the current directory.

Function Use
-------- ---

chdir Changes current working directory.

_chdrive Changes current drive.

_dos_getdrive Gets the current default drive, using MS-DOS
 Interrupt 21h Function 19h.

_dos_setdrive Sets the default disk drive, using MS-DOS
 Interrupt 21h Function 0Eh.

getcwd Gets current working directory.

_getdcwd Gets current working directory for the specified drive.

_getdrive Gets the current disk drive.

mkdir Makes a new directory.

rmdir Removes a directory.

_searchenv Searches for a given file on specified paths.

Additional reference words: 3.00 5.10 6.00 retrieve
KBCategory:
KBSubcategory: KrComplrOthrfunc

PRWIN9105001: C Run-Time getc() Function Corrupts Data
Article ID: Q72463
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9105001

SYMPTOMS
 When using an application that uses the getc() function and a
 Windows edit control, the application experiences data corruption.

RESOLUTION
 The fgetc() function works properly and should be used as a
 substitute.

STATUS
 Microsoft has confirmed this to be a problem in the Windows
 Software Development Kit (SDK) version 3.0. We are researching this
 problem and will post new information here as it becomes available.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrComplrOthrfunc

INF: C 6.00 -GW Switch Incompatible with Windows in Real Mode
Article ID: Q72465
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The Microsoft C compiler version 6.0 has a -GW switch that is used to
generate streamlined prolog and epilog code in applications developed
for the Microsoft Windows environment. However, the prolog and epilog
code generated by -GW should not be used. Use the -Gw switch instead.

More Information:

An application that runs in real mode must store the value of the DS
register on the stack each time it makes a far function call. Calling
a far function might cause Windows to move the application's data
segment when Windows brings in the called code segment from disk. When
the data segment moves, the kernel walks the stack and updates all the
saved DS values to the new data segment location. Because the prolog
code generated by the -GW switch does not push DS on the stack, when
the kernel walks the stack, some other data is on the stack where the
stored DS register should be. When the debugging kernel walks the
stack and encounters the unanticipated data instead of the stored DS
register, it produces a "cannot discard segment" FatalExit error
message.

The Microsoft C compiler generates the following assembly language
code when the -GW switch is specified:

 Prolog Epilog
 ------ ------

 inc bp pop bp
 push bp dec bp
 mov bp, sp ret

To work properly in real mode, the prolog code should be modified to
resemble the following:

 inc bp
 push bp
 mov bp, sp
 push ds ; save DS value on stack for stack walking routine

The Microsoft C compiler generates the modified code when the -Gw
switch is specified.

The following information describes the situations when it is
necessary to use the -Gw switch:
Applications developed for real mode: Always specify the -Gw switch
for real mode. Because Windows can walk the stack at any time, the

Windows prolog and epilog code must be executed for all far functions,
whether or not they are exported.

Applications developed for protected (standard or enhanced) mode: The
-Gw switch is required in protected mode only during the process of
debugging an application when a meaningful stack trace is needed or if
the module contains exported functions. In an exported function, the
Windows prolog code is required to set the DS register to the correct
DGROUP value, even in protected mode. Therefore, the extended prolog
code generated by -Gw is required. However, non-exported far functions
do not require this code.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrComplrSwitch

PRWIN9106001: Crash When frexp() in Small or Medium Model DLL
Article ID: Q73184
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9106001

SYMPTOMS
 Although the C run-time function frexp() is included in the Windows
 version 3.0 libraries for dynamic-link libraries (DLLs), when it is
 called from a Windows small model or medium model DLL, the
 application crashes.

STATUS
 Microsoft has confirmed this to be a problem in the DLL libraries
 for Windows version 3.0. We are researching this problem and will
 post new information here as it becomes available.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrComplrOthrfunc

PRB:
Article ID: Q74699
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

SYMPTOMS
 The linker reports an "export not defined" error even though all
 the functions listed in the EXPORTS section of the definitions
 (DEF) file are defined.

CAUSE
 One of the exported functions uses the C calling convention
 (cdecl).

RESOLUTION
 In the C calling convention, the case of function names is
 preserved, and the name of each function is preceded by an
 underscore. This convention must also be used in the DEF file. For
 example, the function declaration

 int FAR Function()

 is exported as:

 _Function

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrComplrSwitch

INF: Implicit Casting by C Compiler Can Cause Problems
Article ID: Q74739
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

When a function call is made in ANSI C, the compiler implicitly casts
the arguments passed to the function to the types specified in the
function's prototype. Implicit casting to promote signed integers or
characters (int, char) to longer unsigned types (DWORD, WORD) can
cause unexpected behavior. The difficulties occur because the signed
shorter value is promoted by extending its sign bit to the high-order
bits of the unsigned longer type.

An application can avert the problems caused by sign extension by
explicitly casting function arguments to unsigned short types.

More Information:

In accordance with the ANSI standard, if the shorter value has the
sign bit set, the compiler first converts the value to a signed longer
value by extending the sign. The compiler extends the sign by filling
the high-order bits with 1s. It then converts the signed longer value
to unsigned by adding to it the number that is one larger than the
largest unsigned value of that type. This does not change the bit
pattern in a 2s complement implementation. For more information, see
Section 3.2.1.2 of the ANSI C Standard.

To see how this can cause unexpected behavior, consider an application
in the Microsoft Windows graphical environment that calls the
GlobalAlloc function. The second parameter of the function, dwBytes,
is an unsigned long quantity. However, in this application, this
parameter contains an signed integer expression that evaluates to a
number greater than the largest positive signed integer value
(32,767):

 HANDLE FAR PASCAL GlobalAlloc(WORD, DWORD); // function prototype

 int a, b; // int = short (16-bit) signed integer

 a = 9500;
 b = 4;

 GlobalAlloc(GMEM_MOVEABLE, a*b);

The result of a*b is 38,000 (1001010001110000), and the sign bit of
the int is set. To implement the implicit cast to an unsigned long
value (DWORD), the value is first converted to a signed long value:

 11111111111111111001010001110000

The value that is one greater than the largest unsigned long value is
then added, as follows:

 11111111111111111001010001110000
 + 100000000000000000000000000000000

 11111111111111111100101000111000 (4,294,939,760 decimal)

GlobalAlloc attempts to allocate 4,294,939,760 bytes of memory rather
than 38,000, and it fails. The GlobalAlloc call in the application
should be as follows:

 GlobalAlloc(GMEM_MOVEABLE, (WORD)a*(WORD)b);

Problems caused by implicit casting and sign extension are also
encountered frequently when an application passes characters to the
AnsiUpper and AnsiLower functions. The prototypes for these functions
are as follows:

 LPSTR FAR PASCAL AnsiUpper(LPSTR);
 LPSTR FAR PASCAL AnsiLower(LPSTR);

To pass a signed character to AnsiUpper,

 AnsiUpper((DWORD)(BYTE)c) is correct,
 AnsiUpper((DWORD)c) is incorrect.

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrComplrSwitch

INF: Using Near and Far Pointers with C Run-Time Functions
Article ID: Q74788
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

In an application designed for the Microsoft Windows graphical
environment, many C run-time functions do not work with memory
allocated by the GlobalAlloc function when the application is
developed in the small or medium memory model.

More Information:

MS-DOS (non-Windows) applications written in the small or medium
memory model assume the presence of only one data segment (DS).
Therefore, the C run-time functions assume that DS will not change.

However, an application can store data in a block of memory allocated
with the GlobalAlloc function and locked with the GlobalLock function.
The segment returned from GlobalLock will be different from the
application's data segment. Specifying the alternate data segment in a
C run-time function that assumes a near pointer results in the
following C compiler warning:

 WARNING: Segment Lost in Conversion

For example, the following code passes far pointers to a run-time
function incorrectly:

 hMem = GlobalAlloc(...);
 lpMem = GlobalLock(hMem);

 strcpy(szBuffer, lpMem);

 GlobalUnlock(hMem);

This section of incorrect code produces one of two results.

1. If the offset of lpMem extends past the end of application's data
 segment (DS), the application experiences an unrecoverable
 application error (UAE).

2. The function copies information from some random portion of the
 application's DS into the buffer.

If the following line of code is used, the function overwrites data in
the application's data segment, which causes the application to crash
or run incorrectly:

 strcpy(lpMem, szBuffer);
Four ways to work around this situation are:

1. For the most common C run-time functions, Windows provides
 equivalent functions that use far pointers. These functions
 include:

 lstrcat
 lstrcmp
 lstrcmpi
 lstrcpy
 lstrlen

2. Use the far pointer versions of these functions (_fstrcat,
 _fstrcmp, and so on) provided by the Microsoft C Optimizing
 Compiler versions 6.0 and later.

3. For the less common C run-time functions, write a far-pointer
 version as part of the application code. Most of the Microsoft C
 run-time library source code is available from Microsoft.

4. Use the large memory model. However, using the large model in an
 application for Windows has many disadvantages and doing so is not
 encouraged.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrComplrOthrfunc

INF: Windows Does Not Support OS/2 Family API Calls
Article ID: Q43052
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

Windows does not support applications coded with OS/2 Family API
(FAPI) calls.

More Information:

FAPI works in the following manner:

1. The code contains references to OS/2 FAPI calls (such as DosOpen,
 DosRead, and so on).

2. When the program is loaded into OS/2 protected mode, the system
 loader dynamically links the FAPI calls to the OS/2 system-services
 DLLs (Dynamic-Link Libraries).

3. When the program is loaded into real mode (MS-DOS or OS/2
 compatibility box), what actually gets loaded is a small program
 called the "FAPI Loader and Linker." It is this program that loads
 the real code; it dynamically links the FAPI calls to a special
 library of support routines that translate FAPI calls into 80x86
 code and MS-DOS interrupts (INT 21H Function xx).

This process is also described on Page 251 of Gordon Letwin's book
titled "Inside OS/2" (Microsoft Press, 1988).

FAPI works well for programs that need to run in MS-DOS and OS/2
protected mode. The problem is that Windows uses the "New EXE Format"
for programs, bypassing the standard MS-DOS entry point. For example,
if a Windows program is run outside of Windows (in MS-DOS), the
following message appears, and the program terminates:

 This program requires Microsoft Windows

MS-DOS is not responsible for this message; the Windows program itself
is responsible. The way the Windows program works is very similar to
OS/2: it uses dual entry points into the .EXE file. In MS-DOS, a short
program that prints the above message runs; however, in Windows, a
true Windows application runs using the other entry point in the .EXE
file.

Therefore, the problem is narrowed down to the following: if the FAPI
Loader and Linker program is run using the standard MS-DOS .EXE file
entry point, and Windows starts an application using a different entry
point, the dynamic linking of the FAPI routines will not occur.

Therefore, FAPI calls cannot be used in Windows applications.

To avoid this problem, do the following:

Instead of using low-level DOS calls (INT 21H Function xx) in a
Windows application and OS/2 API calls (DosRead, DosOpen, and so
on) in a Presentation Manager (PM) application, use the C run-time I/O
routines for all of these applications.

This will work because the Microsoft C Compiler and the run-time
libraries supply versions of the libraries that work in both OS/2 and
MS-DOS. By moving C code to PM and to Windows, it will not be
necessary to rewrite it, and the appropriate conversion routines will
be supplied at link time.

Be sure not to use high-level (stream) I/O routines in C with Windows;
just use the low-level (handles) versions. This topic is discussed in
Charles Petzold's book titled "Programming Windows" (Microsoft Press,
1988), and in other articles in the Microsoft Knowledge Base. For more
information, query on the following words:

 prod(winsdk) and c and low and level

Additional reference words: SR# G890110-9309 2.x 2.03 2.1 3.00 3.10 3.x
KBCategory:
KBSubcategory: KrComplrSwitch

INF: Creating Streamlined Code for Protected Mode Applications
Article ID: Q75253
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

If an application will be run only under one of Windows' protected
modes (standard mode or enhanced mode), and it is acceptable to allow
only one instance of the application to run at any given time, there
are techniques that can be used to create smaller, faster application
code. This article details the techniques and the factors that must be
considered when they are used.

More Information:

In Windows real mode, when Windows brings a portion of code in from
disk, other objects in memory can be moved about to make room. Every
FAR call (a call to another code segment) and every access to a
resource (menu, dialog box template, string table, and so forth) can
cause memory to move.

Windows allocates a data segment for each instance of each application
run. These data segments are objects that can be moved about as code
and resources are accessed.

Windows provides a data segment identifier to the application. This
value is placed into the DS register. The function prolog code,
generated by the C compiler when the -Gw switch is specified, stores
the value of the DS register on to the stack before any other function
code is executed. If the function changes the value of DS, the
function epilog code will restore the original value when the function
exits.

When Windows moves memory, it "walks" the stack, looking for the
stored DS values. Windows updates the stored information to reflect
the new location for the data segment.

In contrast, under Windows' protected modes, the identifier for the
data segment does not change, even when memory moves. However, because
functions may change the DS register, it is necessary to ensure that
the DS register contains the correct value. The Microsoft C Compiler,
versions 5.1 and later, provides the _loadds keyword, which instructs
the compiler to generate prolog and epilog code for a particular
function. If an application will be run only in protected mode, the
-Gw switch is not necessary. However, the _loadds modifier must be
specified for every exported function.

The restriction to a single instance is important. The code generated
by _loadds sets the DS register to point to the data segment of the
first instance of the program. The second and subsequent instances

would interfere with each other and with the first instance of the
application. The restriction to protected mode is of similar
importance. In the absence of prolog and epilog code, if the data
segment moved, the value of the DS register would not be updated to
reflect the new value; the application would use information in a
random portion of memory.

To prevent an application from running in real mode, use the Resource
Compiler -t option when binding the RES file to the EXE file.

The following code will prevent a second application of the
application from running. When an attempt is made to create a second
instance of the application, the first instance is brought to the top
and activated.

 if (!hPrevInstance)
 {
 /* perform normal RegisterClass processing here */
 }
 else // This only allows one instance
 {
 HWND hWnd, hWnd1;

 hWnd = FindWindow(szAppName, NULL);

 if (IsWindow(hWnd))
 {
 hWnd1 = GetLastActivePopup(hWnd);

 if (IsWindow(hWnd1))
 hWnd = hWnd1;

 BringWindowToTop(hWnd);

 if (IsIconic(hWnd))
 ShowWindow(hWnd, SW_RESTORE);
 SetFocus(hWnd);
 }
 return FALSE;
 }

Optionally, the -G2 switch can be specified to generate smaller and
faster code for the 80286 or later processors. Because the 8086
processor does not support protected mode, this does not exclude any
other equipment.

To summarize, an application that will run only in Windows protected
mode does not require the Windows prolog and epilog code. Applications
that are compiled without the C compiler -Gw switch must have the
following three attributes:

1. The _loadds modifier is specified for all exported functions.

2. The Resource Compiler -t switch is specified to prevent the
 application from running in real mode.

3. Only one instance of the application is allowed. Use the code

 provided above to enforce this restriction.

Additional reference words: 3.0 3.00
KBCategory:
KBSubcategory: KrComplrSwitch

INF: Sample Code Replaces sscanf in DLLs for Windows
Article ID: Q76684
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The Microsoft C run-time library function sscanf is not compatible for
use with a dynamic-link library (DLL) for the Microsoft Windows
graphical environment compiled for the small or medium memory model.
The sscanf function relys on near pointers in these memory models and
fails when the stack segment (SS) and data segment (DS) are not the
same.

WSSCANF is a file in the Software/Data Library that can serve as a
limited replacement for this function. WSSCANF can be found in the
Software/Data Library by searching on the word WSSCANF, the Q number
of this article, or S13183. WSSCANF was archived using the PKware
file-compression utility.

More Information:

The sscanf, fprintf, and scanf functions are not available in small or
medium model DLLs for the Windows environment.

There are two factors that cause these functions to be incompatible:

1. These functions rely on near pointers.

2. These functions expect SS == DS.

Because neither of these conditions is true when a function in a DLL
uses data from an application, these functions are not available.

The WSSCANF file in the Software/Data contains the source code to a
wsscanf function that can serve as a limited replacement for the
sscanf function. The wsscanf code is based on the sscanf source code
in the Microsoft C run-time library. The source code has been modified
to work correctly in a DLL, and requires that all parameters are
specified as FAR pointers. The following code demonstrates using the
wsscanf function:

 char szBuf[] = "1 3 b000:0200";
 int nValue1, nValue2;
 LPSTR lpPtr;

 wsscanf(szBuf, "%d %d %p", (int FAR *)&nValue1,
 (int FAR *)&nValue2, (LPSTR FAR *)&lpPtr);

Note that the first two parameters are not explicitly typecast in the
function call. The function prototype typecasts the first two

parameters automatically; however, the application must typecast each
subsequent parameter. If the application does not typecast each
parameter, when the application calls wsscanf an unrecoverable
application error (UAE) occurs.

The wsscanf function does not support floating point numbers (the %f,
%g, and %e format specifiers).

Additional reference words: 3.00 softlib WSSCANF.ZIP
KBCategory:
KBSubcategory: KrComplrDsss

INF: Using the Linker /ALIGN Option
Article ID: Q47493
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

This article discusses various considerations regarding the Microsoft
Linker and its /ALIGN option when it is used to develop applications
for the Microsoft Windows environment. This information also applies
to the development of dynamic-link libraries (DLLs) for Windows.

More Information:

According to its definition, the Microsoft Linker /ALIGN option
"directs the linker to align segment data in the executable file along
the boundaries specified by 'size.'" The "size" parameter is in bytes
and must be a power of 2. Specifying /ALIGN:16 on the LINK line aligns
segments on 16-byte boundaries. Making an /ALIGN:16 specification is
recommended for Windows applications and dynamic-link libraries (DLLs)
because the default alignment is 512.

When the linker creates an EXE file and /ALIGN:16 is specified, if a
segment does not end on a 16-byte boundary, the segment is padded with
extra bytes. The next segment always begins at a 16-byte boundary.

If an application contains several small segments, and no /ALIGN
option is specified on the Linker command line, each segment will
contain a great deal of wasted space and the resulting EXE file will
be unnecessarily large. The amount of wasted space is computed as
follows:

 waste = align - (segment modulo align)

Therefore, for a 514-byte segment, an align size of 512 causes 510
bytes to be wasted. However, for the same segment, an alignment size
of 2 bytes does not waste any space.

Problems can arise when the Linker creates a very large EXE file using
a small align value because the size of the EXE may exceed the range
of values that can be represented by the EXE header segment table.

To demonstrate the problems that can arise, consider a very large EXE
file that is linked with an align size of 2. During the process of
creating this EXE file, the Linker puts segment 42 at file offset
380,000 and records the position in the New EXE Segment Table. The
format of this table is as follows:

 Offset Length Contents
 ------ ------ --------

 0h 2 Offset of segment relative to beginning of file
 after shifting value left by alignment shift count.

 2h 2 Length of segment (0h for segment of 65536 bytes).

 4h 2 Segment flag word.

 6h 2 Minimum allocation size for segment; that is,
 amount of space Windows reserves in memory for the
 segment (0h for minimum allocation size of 65536
 bytes).

In this case, the offset of the segment to place in the table is
(380,000 >> 1) = 190,000, which is too large to store in a 16-bit word
(the maximum value is 65,535). Therefore, 58,928 (the low-order 16
bits of 190,000) is stored. Unfortunately, the Linker does not provide
any warning of the data loss involved with this step.

When Windows loads segment 42 from the EXE file, it takes the value
58,928 and multiplies it by the align size (2), which results in an
offset of 117,856 and does not lead to the desired segment in the
file.

For more information on the new EXE (New Executable) file header
format, see appendix K (pages 1488-1497) of the "MS-DOS Encyclopedia"
(Microsoft Press).

Additional reference words: 2.03 2.10 3.00 2.x
KBCategory:
KBSubcategory: KrComplrSwitch

PRB: SetEnvironment() Returns Incorrect Values
Article ID: Q76590
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

SYMPTOMS
 SetEnvironment() returns unexpected values when used to delete an
 environment.

CAUSE
 SetEnvironment() returns 1 when an environment is successfully
 deleted, not -1 as documented in the "Windows Software Development
 Kit Reference Volume 1" for version 3.0.

STATUS
 The documentation is incorrect.

More Information:

SetEnvironment loads 1 only into al, not ax; therefore, upon return
from a successful delete, the high portion of the returned int (short)
can contain a random value, depending on how many bytes SetEnvironment
copied. SetEnvironment returns 0 (zero) upon failure, as documented.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrComplrOthrfunc

PRB: OutputDebugString() Comments Section Documentation Error
Article ID: Q61106
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

SYMPTOMS
 The OutputDebugString() function is documented incorrectly on page
 4-326 of the "Microsoft Software Development Kit Reference Volume
 1" for version 3.0. The "Comments" section incorrectly states that
 this function is available only in the debugging version of
 Windows.

RESOLUTION/STATUS
 The documentation should state that OutputDebugString() messages
 are displayed under both versions of Windows.

 Messages that should be written only for debugging purposes should
 be placed in a conditional compilation block, such as the following:

 #ifdef DEBUG
 OutputDebugString(lpMessage);
 #endif

 Microsoft has confirmed that this error occurs on page 4-326 of the
 "Microsoft Software Development Kit Reference Volume 1" for version
 3.0. We will post new information here when the documentation has
 been corrected.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrDebugDebugver

INF: Determine Application Stack Size
Article ID: Q40060
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

During the process of creating an application, it may be useful to
determine how much stack space the application requires.

STACK is a file in the Software/Data Library that contains two
functions written in Microsoft Macro Assembler (MASM) code to provide
this information. An application that displays this data about itself
is also included.

STACK can be found in the Software/Data Library by searching on the
word STACK, the Q number of this article, or S12169. STACK was
archived using the PKware file-compression utility.

Additional reference words: 2.00 2.10 3.00
KBCategory:
KBSubcategory: KrDebugStacktr

INF: An Annotated Dr. Watson Log File
Article ID: Q81142
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

Dr. Watson is a utility included with Windows 3.1 that logs
information about applications that fail. This article presents a
sample log file and explains what the various entries signify.
Comments in the log file start with pound sign (#).

This article annotates a log file for the BICHO application, which
tests Windows by faulting in the various ways. Bicho is Bolivian slang
for "bug" or "critter."

More Information:

Dr. Watson writes the following line each time it starts execution
unless the [dr. watson] section of the WIN.INI file contains the
line SkipInfo=time:

Start Dr. Watson 0.80 - Thu Sep 26 10:51:28 1991

These lines mark the beginning of a Dr. Watson failure report
They report the version of Dr. Watson and the date and time of the
reported event.

**
Dr. Watson 0.80 Failure Report - Thu Sep 26 10:51:36 1991

The next line reports that an application named "BICHO" encountered
an "Exceed Segment Bounds" fault while reading memory. The precise
point of failure was also in BICHO, 0x6b bytes after the start of
the DoCommand function.

BICHO had a 'Exceed Segment Bounds (Read)' fault at BICHO
_DoCommand+006b

The following line repeats the previous information formatted for
automatic parsing code. It also includes the instruction that caused
the fault (a push instruction in this case).

tagBICHO$Exceed Segment Bounds (Read)$BICHO _DoCommand+006b$push
word ptr [fffe]$Thu Sep 26 10:51:36 1991

The following lines report the contents of the CPU registers:

CPU Registers (regs)

The 16-bit registers are listed first. This information can be
useful to determine what address an instruction modified when the
fault occurred.

ax=1e54 bx=0014 cx=0d7f dx=0111 si=1e54 di=0111

The next items are the instruction pointer (otherwise known as the
program counter), stack pointer, and base pointer. This line also
lists the state of the flag bits. In this example, the Overflow,
Direction, Sign, Zero, and Carry bits are Clear (0), while the
Interrupt, Auxcarry, and Parity bits are Set (1).

ip=02fd sp=230c bp=237a O- D- I+ S- Z- A+ P+ C-

The code segment selector is 0e57, linear address is 8059fbc0. The
code segment's limit is 83f. (Enhanced mode linear addresses often
start with 8xxx.) Accessing a code or data segment beyond its limit
is a common cause of GP faults.

cs = 0e57 8059fbc0:083f Code Ex/R

The next line provides information about the stack segment selector.

ss = 0d7f 8059d5e0:25df Data R/W

The following line provides information about the data segment
selector. Note that the limit is 25df, while the application
attempted to read the value at fffe, which is beyond the segment's
limit.

ds = 0d7f 8059d5e0:25df Data R/W

The following line provides information about the extra segment
selector:

es = 0d7f 8059d5e0:25df Data R/W

The next lines provide information about the 32-bit registers.
If a selector is 0, it corresponds to the null pointer. Attempting
to use a null pointer is another common cause of GP faults.

CPU 32 bit Registers (32bit)
eax = 00001e54 ebx = 00000014 ecx = ffff0d7f edx = 00000111
esi = 00001e54 edi = 00000111 ebp = 0000237a esp = 800422fc
fs = 0000 0:0000 Null Ptr
gs = 0000 0:0000 Null Ptr
eflag = 00000002

The next lines provide information about the Windows installation.

System Info (info)
Windows version 3.10
Debug build # The debug version of windows (from the SDK) was running
Windows Build 3.1.048 # This is a prerelease build of Windows, #48
Username Unknown User # Your Name Here
Organization Unknown Organization # Your Organization Here

System Free Space 7131008

The following provides the stack size for the current task:

Stack base 1122, top 9164, lowest 7504, size 8042

Dr. Watson records some statistics about the Windows environment:

System resources: USER: 87% free, seg 0777 GDI: 85% free, seg 05d7
LargestFree 6594560, MaxPagesAvail 1610, MaxPagesLockable 267
TotalLinear 1948, TotalUnlockedPages 274, FreePages 52
TotalPages 614, FreeLinearSpace 1611, SwapFilePages 7158
Page Size 4096
4 tasks executing.
WinFlags -
 Math coprocessor
 80386 or 80386 SX
 Enhanced mode
 Protect mode

The following records the contents of the stack to determine what
code called the routine that failed:

Stack Dump (stack)

Stack frame 0 indicates that the failure occurred in BICHO, 0x6b
bytes after the start of the DoCommand function, as reported
earlier.

Stack Frame 0 is BICHO _DoCommand+006b ss:bp 0d7f:237a

The offending instruction is disassembled in context, as follows:

0e57:02f0 e9 02b9 jmp near 05ac
0e57:02f3 6a 00 push 00
0e57:02f5 9a 8db0 0477 callf 0477:8db0
0e57:02fa e9 02af jmp near 05ac
(BICHO:_DoCommand+006b)
0e57:02fd ff 36 fffe push word ptr [fffe]
0e57:0301 68 0110 push 0110
0e57:0304 e8 fe5d call near 0164
0e57:0307 83 c4 04 add sp, 04

The application tried to read a value from memory at address DS:fffe
and to push that value on the stack. However, the limit of the DS
segment is 25df. The next stack frame documents that the BICHO
application MainWndProc called DoCommand:

Stack Frame 1 is BICHO MAINWNDPROC+0027 ss:bp 0d7f:2388

0e57:0670 eb 16 jmp short 0688
0e57:0672 ff 76 0a push word ptr [bp+0a]
0e57:0675 56 push si
0e57:0676 e8 fc19 call near 0292
(BICHO:MAINWNDPROC+0027)
0e57:0679 83 c4 04 add sp, 04
0e57:067c 99 cwd
0e57:067d eb 1f jmp short 069e
0e57:067f 6a 00 push 00

"USER" in the next stack frame is the Windows module USER.EXE. It
calls application window and dialog procedures. In this case, USER
called the BICHO application's MainWndProc.

Stack Frame 2 is USER IDISPATCHMESSAGE+007e ss:bp 0d7f:239e

In the next stack frame, the BICHO application's WinMain function
called DispatchMessage, which called MainWndProc.

Stack Frame 3 is BICHO WINMAIN+0050 ss:bp 0d7f:23bc

In the last stack frame, the Windows start-up code calls the
application's WinMain function.

Stack Frame 4 is BICHO 1:00a3 ss:bp 0d7f:23ca

The next lines list all the tasks running in the system when the
fault occurred. Dr. Watson itself, the shell application, and the
faulting application will always be included.
System Tasks (tasks)

Task WINEXIT, Handle 0daf, Flags 0001, Info 9248 08-09-90 16:52
 FileName C:\MS\WIN\DON\WINEXIT.EXE
Task DRWATSON, Handle 0ea7, Flags 0001, Info 26256 09-23-91 12:00
 FileName C:\WIN31\DRWATSON.EXE
Task PROGMAN, Handle 060f, Flags 0001, Info 110224 09-23-91 12:02
 FileName C:\WIN31\PROGMAN.EXE
Task BICHO, Handle 0da7, Flags 0001, Info 16537 09-11-91 8:45
 FileName D:\BICHO.EXE

The last part of a failure report is any information typed in the
"Dr. Watson's Clues" dialog box.

1> I ran a test app that accessed a value
2> beyond the limits of the segment bounds.

Dr. Watson writes this line when it shuts down.

Stop Dr. Watson 0.80 - Thu Sep 26 10:52:10 1991

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrDebugDrwatson

INF: Programs Crash Accessing AUX Port Under Debug Version
Article ID: Q32322
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

Some programs that run properly under retail Windows crash when trying
to access the AUX port if run under the debug version of Windows. This
is because, under the debug version of Windows, the Kernel, User, and
GDI do much more extensive error checking. If an error is found, the
Kernel dumps the error and a stack trace to the AUX port. This causes
an error if the port does not exist.

To run the debugging Kernel, there must be a terminal or other machine
connected to COM1. The command, "MODE COM1:9600,N,8,1", (or whatever
settings are appropriate) must then be executed before entering Windows.
This command can be placed in the AUTOEXEC.BAT file. To test if the
debugging Kernel is working properly, enter "dir > com1".

Alternatively, this can be done on a monochrome display by putting
OX.SYS in the CONFIG.SYS file and using:

 symdeb /m

OX.SYS redirects all I/O for the AUX port to the main keyboard and to
the monochrome display. OX.SYS can be found in the Software/Data
Library by searching on the keyword OX, the Q number of this article,
or S12005. OX was archived using the PKware file-compression utility.

In Windows version 3.0, the WDEB386 debugger can be used with the
debug version of Windows. For more information on WDEB386, query on
the following words:

 prod(winddk) and wdeb386

Additional reference words: 2.03 2.10 3.00
KBCategory:
KBSubcategory: KrDebugMisc

PRB: Pointer Functions in MASM Can Hang Real Mode
Article ID: Q68537
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

SYMPTOMS
 Windows applications written using the Microsoft Macro Assembler
 (MASM) can fail when run under real mode if pointers to FAR
 functions are used in the code.

CAUSE
 This failure is caused by the following sequence of events:

 1. MASM breaks a FAR pointer into separate segment and offset fixup
 records in the OBJ file.

 2. The linker incorrectly resolves the offset record to point to the
 wrong location in Windows call thunk table.

 3. When the FAR function is called through the thunk table, invalid
 code is executed. This hangs the system.

RESOLUTION
 Define a double-word variable in the application's data segment and
 initialize it to the function address. Instead of using the
 function pointer directly in any code, use the value stored in the
 variable. MASM will correctly create a FAR pointer fixup record for
 the variable. This record is handled entirely by the loader and
 results in correct operation.

More Information:

Normally, when a FAR function is referenced, a fixup record for the
function pointer is placed in the EXE file. The fixup record is
resolved at load time by the Windows Kernel to point to a call thunk.
A call thunk is a short piece of code used in Windows real mode to
check if the code segment containing the called function is currently
in memory, and to load it from disk if necessary.

When a FAR function is used in an assembly program as a separate
segment and offset, MASM creates two fixup records: a segment that is
resolved by the loader and an offset, which is incorrectly resolved by
the linker to point to the incorrect offset in the call thunk table.

For example, an assembly program may contain a function pointer
reference in the form:

 ;
 ; Assume wc is a WNDCLASS structure, and MAINWNDPROC is the
 ; main window procedure for the application.
 ;

 mov WORD PTR wc.clsLpfnWndProc, OFFSET MAINWNDPROC
 mov WORD PTR wc.clsLpfnWndProc+2, SEG MAINWNDPROC

Since there are two separate references to the function, MASM
generates two separate fixup records. The value for OFFSET MAINWNDPROC
is incorrectly resolved by the linker.

To generate the correct fixup record, it is necessary to create a
variable in the application's data segment that references the
function. Always use that variable to load memory or registers with
the function address.

 ;
 ; Define a pointer variable and initialize to the function
 ; address.
 ;

 data segment
 var_MAINWNDPROC dd MAINWNDPROC
 data ends

 ...

 ;
 ; Make all references to the function through the variable.
 ;

 mov WORD PTR wc.clsLpfnWndProc, var_MAINWNDPROC.0
 mov WORD PTR wc.clsLpfnWndProc+2, var_MAINWNDPROC.2

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrDebugMisc

INF: Profiling Time Between OutputDebugString and FatalExit
Article ID: Q68624
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

During the process of profiling an application, SHOWHITS.EXE typically
reveals that a fairly large percentage of time was spent in the
Microsoft Windows kernel between the FatalExit and OutputDebugString
functions.

This phenomenon occurs because a large amount of code between
FatalExit and OutputDebugString is not public; however, this code is
common to many public entry points. Therefore, when SHOWHITS.EXE
compares the data generated from profiling an application to the data
in the kernel symbol file, it matches the closest public symbol to the
recorded information. Because the nonpublic code is present,
SHOWHITS.EXE reports that the closest public symbols are FatalExit and
OutputDebugString. However, the application may not be spending any
time in either of these functions; instead, it may be spending time in
some private function that is located between these functions.

More Information:

Because of the nonpublic code, determining exactly how much time the
application is spending in a particular block of code can be
difficult.

The GetCurrentTime function and conditional compilation can be very
helpful when timing specific sections of application code.
GetCurrentTime returns the amount of time that has elapsed since
Windows started. If an application calls this function before and
after a particular block of code, the application can generate
statistics on how much time is required for this block of code to
execute.

The following code demonstrates this idea:

// This preprocessor variable should be defined to build a profiling
// version of the application.
#define PROFILING

// This section should be either in the global variable section of the
// application or in the variable declaration section of the function
// to be profiled.
#ifdef PROFILING
 static char szProfBuf[80];
 static DWORD dwPrevTime, dwCurTime;
#endif

// This code initializes the variable and should be placed just before

// the code that is used to time a block of code.
#ifdef PROFILING
 dwPrevTime = GetCurrentTime();
#endif

// This block of code is placed after each section of code timed. It
// will display the elapsed time and update the previous time variable
// so that a number of blocks of code can be timed.
#ifdef PROFILING
 dwCurTime = GetCurrentTime();
 wsprintf((LPSTR)szProfBuf, (LPSTR)"%lu\n\r\0",
 dwCurTime - dwPrevTime);
 OutputDebugString((LPSTR)szProfBuf);
 dwPrevTime = dwCurTime;
#endif

The sample code listed above displays the elapsed time on a secondary
debugging monitor. If required, this code can be modified to write the
data to a file for analysis instead of displaying the data on a
monitor.

Additional reference words: 3.00 MICS3 T13
KBCategory:
KBSubcategory: KrDebugMisc

INF: Tracking Unrecoverable Application Errors Without CVW
Article ID: Q68825
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

If an application causes an unrecoverable application error (UAE), and
this behavior is not duplicated when the application runs under
CodeView for Windows (CVW), it can be very difficult to isolate the
problem.

If a debugging terminal is available, a call to OutputDebugString()
will put a message on the terminal. However, if no additional hardware
is in place, the application can leave data regarding its path of
execution by calling WriteProfileString() to modify the WIN.INI file.

More Information:

Consider the following code fragment:

 case WM_MOUSEMOVE:
 WriteProfileString ("TestApp", "Debug", "Entering WM_MOUSEMOVE");
 MousePos[iGlobalIndex] = lParam;
 WriteProfileString ("TestApp", "Debug", NULL);
 break;

Assume that it is unclear whether the UAE happens in this code (for
example, if iGlobalIndex takes on an invalid value). This has not
occurred when running in the CVW debugger, or it takes so long to
reproduce under CVW that the debugger is not useful.

The next time the UAE occurs, if the [TestApp] section of the WIN.INI
file has the following line

 Debug=Entering WM_MOUSEMOVE

the UAE occurred in the bracketed code. Otherwise, the line would be
deleted from WIN.INI. This evidence would be helpful in tracking and
correcting the bug.

In this particular case, the performance hit can be quite severe
because the WM_MOUSEMOVE message is sent quite often and updating
WIN.INI requires a write to the disk. However, by testing an
appropriate, but less common, message (such as WM_LBUTTON*) first, the
worst case slowdown shown in the example above can be avoided.

Additional reference words: 3.00 MICS3 R3.9
KBCategory:
KBSubcategory: KrDebugGpfaults

FIX: One Cause of FatalExit 0x0403
Article ID: Q69805

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.0
 and 3.1
--

Summary:

PROBLEM ID: WIN9103026

SYMPTOMS
 When running an application under the debugging version of Windows
 version 3.0, Windows reports fatal exit 0x0403 "invalid ordinal
 reference."

CAUSE
 An exported function in a Windows dynamic-link library (DLL) was
 declared with the RESIDENTNAME attribute in the DEF file associated
 with the DLL.

RESOLUTION
 Microsoft has confirmed this to be a problem in Windows version
 3.0. Either of the following will resolve this problem:

 - Do not associate the RESIDENTNAME attribute with any exported
 function other than the Windows exit procedure (WEP) of the DLL.
 The WEP MUST be declared with the RESIDENTNAME attribute.

 -or-

 - The application can declare links to the functions of the DLL by
 using the IMPORTS section of its module definition file. When
 this is done, it is not necessary to use the IMPLIB utility.

 For example, a DLL's module definition file, DLL.DEF, contains
 the following text:

 EXPORTS
 zippo @2 RESIDENTNAME
 harpo @3 RESIDENTNAME

 An application can avoid this problem by using the following
 text in its module definition file, APP.DEF:

 IMPORTS
 zippo = mydll.2
 harpo = mydll.3

 This problem was corrected in Windows version 3.1.

Additional reference words: 3.00 SR# G910108-2
KBCategory:
KBSubcategory: KrDebugFatlexit

FIX: One Cause of FatalExit in Debug Enhanced Mode
Article ID: Q70800
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9103008

SYMPTOMS
 Running an application under the Microsoft Windows debugging kernel
 causes a FatalExit message "free memory overwrite at y:x" to appear
 on the debugging monitor or terminal.

CAUSE
 For performance reasons, when an application releases a memory page
 that was previously on the kernel free page list, Windows does not
 write the kernel's memory test pattern back into the freed memory.
 The kernel interprets this as a problem with the application.

RESOLUTION
 Microsoft has confirmed this to be a problem in Windows version
 3.0. Two ways to avoid this problem are as follows:

 - During the debugging phase of application development, turn off
 paging by setting Paging=0 in the [386enh] section of the
 SYSTEM.INI file. Changing this setting negatively impacts system
 performance.

 - Modify the [kernel] section of the WIN.INI file to set
 EnableFreeChecking=0.

 This problem was corrected in Windows version 3.1.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrDebugFatlexit

FIX: UAE at Application Load Time Caused by Preload Area Size
Article ID: Q70805
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9103013

SYMPTOMS
 When an application is in the process of loading, it experiences an
 unrecoverable application error (UAE).

CAUSE
 The size of the preload area, as reported by the Microsoft Windows
 Resource Compiler, is an exact multiple of 64K (10000h).

RESOLUTION
 Microsoft has confirmed this to be a problem in Microsoft Windows
 version 3.0. To avoid this problem, change the size of the preload
 area by modifying the application's module definition (DEF) file or
 resource (RC) file to change the number of segments that are marked
 PRELOAD.

 This problem was corrected in Windows version 3.1.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrDebugMisc

INF: Redirecting Debugging Information Under Windows 3.0, 3.1
Article ID: Q86263
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

Each new application for the Microsoft Windows environment should be
tested under the Windows debugging kernel. When an application
performs an illegal or potentially harmful operation, the debugging
kernel traps the error and provides a descriptive message about the
source of the problem. By default, the debugging kernel sends its
messages to the AUX device (which maps to the COM1 port). This article
describes how to redirect output from the debugging kernel under
Windows versions 3.0 and 3.1.

More Information:

As noted above, in the Windows 3.0 and 3.1 environments, the debugging
kernel sends its data to the AUX device, which (in general) maps to
the COM1 port. One method to display this debugging information is to
connect a serial communications terminal or another computer running a
terminal emulation program to the COM1 port. Before running Windows,
set the port's parameters appropriately through the MS-DOS MODE
command. Placing the MODE command in the AUTOEXEC.BAT file
automatically sets the port's parameters.

When the debugging kernel starts, if no device is connected to COM1,
the kernel displays a "Cannot write to device AUX" message box. If the
COM1 port is dedicated to another use and cannot be connected to a
serial terminal, you can configure the debug kernel to send its
messages elsewhere. The remainder of this article explains the
procedures required.

Windows 3.1

In the Windows 3.1 environment, the debugging terminal is not
required. The Windows 3.1 debugging kernel provides two methods to
redirect debugging information:

1. Redirect the debugging information from COM1 into a file by
 specifying the following in the [Debug] section of the SYSTEM.INI
 file:

 OutputTo = <filename>

 To disable sending debug messages to AUX, specify the following in
 the SYSTEM.INI file:

 OutputTo = NUL

2. Version 3.1 of the Microsoft Windows Software Development Kit (SDK)
 includes the DBWIN sample program in the advanced samples directory
 (by default, C:\WINDEV\SAMPLES). DBWIN provides a good interface
 and some useful features to debug an application in the Windows
 environment. DBWIN can disable sending debugging messages to AUX or
 redirect the debugging messages to any of the following:

 - The COM1 port
 - The COM2 port
 - A window on the primary display
 - A secondary monochrome monitor

 These redirection options are listed on the Options menu. When
 using DBWIN, choose Settings from the Options menu and verify that
 the Break On Traces option is not selected. For more information on
 DBWIN, see the DBAPI.TXT and DBWIN.TXT files in the DBWIN
 directory, Appendix C of the "Microsoft Windows Software
 Development Kit: Programming Tools" version 3.1 manual, and the
 online help files.

Windows 3.0

Windows 3.0 does not provide a built-in method to redirect debugging
output; external measures are required.

This article outlines two methods to redirect output under Windows
3.0. The first is through the WINAUX.SYS device driver that redirects
debugging output into a window on the main display, similar to the
DBWIN application discussed above. The second is through the OX.SYS
device driver that redirects debugging output to a secondary
monochrome adapter connected to the system.

Because systems that use an 8514 and VGA display combination cannot
also use a secondary monochrome monitor, the WINAUX.SYS device driver
is the method of choice. WINAUX can be found in the Software/Data
Library by searching on the word WINAUX, the Q number of this article,
or S13525. WINAUX was archived using the PKware file-compression
utility.

To install WINAUX.SYS, place the following line in the CONFIG.SYS
file:

 DEVICE=WINAUX.SYS

Another method to redirect debugging output under Windows 3.0 is to
use the OX.SYS device driver that redirects output for the AUX device
to a monochrome video adapter. Many development systems have a
secondary monochrome display to use with CodeView for Windows (CVW).
OX.SYS sends the debug messages to the monochrome display.

The OX.SYS file and its source code is available in the Software/Data
Library. If necessary, you can modify the OX source code to direct
debugging output to another device such as LPT1, COM2, and so on. OX
can be found in the Software/Data Library by searching on the word OX,

the Q number of this article, or S12005. OX was archived using the
PKware file-compression utility.

To install OX.SYS, add the following line to the CONFIG.SYS file:

 DEVICE=OX.SYS

Under Windows 3.0, OX.SYS is limited because it provides an input-only
or output-only device. Therefore, when the Windows debugging kernel
provides output for a FatalExit message followed by the "Abort, Break,
Ignore?" prompt, OX.SYS cannot obtain the user's response. Third-party
developers have developed bi-directional device drivers to address
this limitation and have placed the drivers into the public domain.
Two examples are WINRIP.SYS and MONO-DRV.SYS.

Additional reference words: 3.00 3.10 softlib OX.ZIP WINAUX.ZIP
KBCategory:
KBSubcategory: KrDebugDebugver

PRB: Linker Warning L4000
Article ID: Q72384
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

SYMPTOM
 During the linking of an application for Windows version 3.00, a
 warning L4000 is displayed by the Microsoft linker.

CAUSE
 This warning is caused by the /WARNFIXUP linker switch. The warning
 is given when segments in the executable file are moved by the
 linker.

RESOLUTION
 There are two ways to address this warning message:

 1. Add the /NOPACKCODE option to the linker command line.
 2. Modify the DEF file to include a SEGMENTS statement.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrDebugMisc

FIX: Bad Extended Error Information After Critical Error
Article ID: Q72495
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:
PROBLEM ID: WIN9012019

SYMPTOMS
 After an MS-DOS critical error has occurred in Windows (for
 example, the system error "Cannot read from drive A:"), calls to
 return extended error information, such as MS-DOS Interrupt 21H
 function 59H or the C run-time function getexterr, return the value
 53H (Interrupt 24H failure) rather than the error code for the
 critical error.

CAUSE
 Windows does not save the original error code to return to the
 application.

STATUS
 Microsoft has confirmed this to be a problem in Windows version
 3.0. This problem was corrected in Windows version 3.1.

Additional reference words: 3.00 SetErrorMode MICS3 R3.5
KBCategory:
KBSubcategory: KrDebugMisc

PRB: Fatal Exit 0x00FF: MakeProcInstance for Current Instance
Article ID: Q74363
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

SYMPTOMS
 An application running under the Microsoft Windows graphical
 environment receives FatalExit error 0x00FF, "MakeProcInstance only
 for Current Instance."

CAUSE
 A function in a dynamic-link library (DLL) calls the
 MakeProcInstance function using an application's instance handle.
 The FatalExit occurs because the current value of the DS register
 does not match the instance handle passed to MakeProcInstance.

RESOLUTION
 If a function in a DLL calls MakeProcInstance on behalf of an
 application, the function must be exported as a NODATA function in
 the module definition (DEF) file for the DLL. This causes the
 function to use the same data segment as the calling application.

More Information:

When an application is executing, the value of the DS register is
equal to the application's data segment, which is identified by the
application's instance handle.

By default, when an application calls an exported DLL function, the
value of the DS register is set to the data segment of the DLL.
However, if the DLL function is exported with the NODATA option, the
value of the DS register does not change when the function is called.
In this case, the DLL can safely call the MakeProcInstance function
using the calling application's instance handle because the current
value of the DS register is the same as the instance handle passed to
MakeProcInstance.

Additional reference words: 3.00 RIP FF
KBCategory:
KBSubcategory: KrDebugFatlexit

PRB: KRNL386: Unable to Enter Protected Mode
Article ID: Q105207
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
--

SYMPTOMS
========

Windows 3.1 fails to boot and returns to MS-DOS with a "KRNL386:
Unable to enter Protected Mode" error message. This usually occurs
after switching to the debug version of Windows.

CAUSE
=====

Windows 3.1 was started with old files left over from an upgraded
installation of Windows 3.0 with the Windows 3.0 Software Development
Kit (SDK).

RESOLUTION
==========

Replace the old files with the correct versions. The files of
importance are KRNL386.*, KRNL286.*, GDI.*, and USER.*. The old files
are from 1990 and the new files are from 1992. Sort by date, and
replace these old files with the correct versions.

MORE INFORMATION
================

It's generally a good idea to start with a fresh installation of
Windows in a clean directory when this problem occurs. This ensures
that other obsolete files are cleared from the upgraded 3.0
installation.

Additional reference words: 3.10 3.00 n2d debug version d2n
KBCategory:
KBSubcategory: KrDebugDebugver

PRB: Windows FatalExit 0x0280 Error Caused by FAR WinMain
Article ID: Q41451
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

SYMPTOMS
 When an application is launched, a FatalExit 0x0280
 (ERR_GMEMHANDLE, invalid global handle) error occurs.

CAUSE
 The application declares the WinMain function as a FAR function.
 The design of the Microsoft Windows kernel assumes that an
 application's entry point is a near function rather than a far
 function.

RESOLUTION
 Remove the FAR keyword from the declaration of the WinMain
 function.

Additional reference words: 1.x 2.03 2.10 3.00 2.x
KBCategory:
KBSubcategory: KrDebugFatlexit

INF: Stack Traces Under Windows 3.1 SDK Debugging Kernel
Article ID: Q89331
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

When a FatalExit occurs, the Microsoft Windows operating system
version 3.1 Software Development Kit (SDK) debugging kernel does not
display a stack trace on the debugging monitor unless the user presses
the ENTER or SPACEBAR key immediately after the kernel displays the
"Abort, Break, Ignore" message. This behavior is different from that
found in the debugging kernel for Windows version 3.0 or prerelease
versions of Windows version 3.1.

The rationale behind changing this behavior was to simplify the
interface to the debugging kernel and to speed its execution. When a
FatalExit message occurs, a stack trace is available if desired.
However, the kernel does not take time to create and display unwanted
stack traces.

More Information:

In its default configuration, the Windows debugging kernel displays
messages on a serial terminal connected to the COM1 port. The kernel
produces four levels of messages: Trace, Warning, Error, and
FatalExit. Appendix C of the SDK "Programming Tools" manual and the
SDK Help system documents the Windows debugging kernel.

When the debugging kernel displays the "Abort, Retry, Ignore" message
for a FatalExit it does not display a stack trace immediately.
Instead, the kernel enters a loop, waiting for the user to respond. If
the user presses the SPACEBAR or ENTER key before the loop times out,
the kernel displays the stack trace. To continue execution after the
stack trace, press the I key to ignore the FatalExit. The other
options are to press the A key to abort execution or the B key to
break into the debugger.

The Windows 3.1 SDK includes an advanced sample application called
DBWIN that provides a good user interface and some useful features to
assist in debugging a Windows application with the debugging kernel.
If the advanced samples are installed into the default directory, the
DBWIN source code is in the C:\WINDEV\SAMLES\DBWIN directory.

DBWIN can redirect debugging messages into a window on the main
display or to a secondary monochrome monitor. However, when DBWIN
redirects messages in this manner, the debugging kernel ignores
FatalExit messages (irrespective of the debug settings). In other
words, no stack traces are available when DBWIN redirects debug
messages to a window or a secondary monochrome monitor. However,
stack traces are available when DBWIN redirects debugging information

to COM1 or COM2 as outlined above for a debugging terminal.

DBWIN ignores FatalExit messages because the system runs much faster
when it displays debugging messages in a window rather than on a
serial terminal. However, because a stack trace provides very useful
information to assist in debugging an application, this default
behavior might not be considered very useful.

The text below provides the modification to the DBWIN source code
required to provide stack traces in a window or on a secondary
monochrome monitor. The modified version of DBWIN produces a stack
trace for every FatalExit message displayed by the debugging kernel,
similar to the behavior of the Windows 3.0 debugging kernel. While the
system might run slowly with the modified DBWIN, the additional
debugging information might make the change worthwhile. The modified
version of DBWIN is available in the NUDBWIN file in the Software/Data
Library. NUDBWIN can be found in the Software/Data Library by
searching on the keyword NUDBWIN, the Q number of this article, or
S13596. NUDBWIN was archived using the PKware file-compression
utility.

The only modifications required are to the NotifyCallback function in
the DBWINDLL.C source file. Add the text in the lines that begin with
NEW to the file, as follows:

BOOL CALLBACK _export _loadds NotifyCallback(WORD id, DWORD dwData)
{
 BOOL fHandled;
 .
 .
NEW // By default, produce stack trace at every FatalExit
NEW static BOOL fStackTrace = TRUE;

 // If we're not outputting anything,
 // just return FALSE to chain to next handler.
 if (modeOutput == OMD_NONE)
 return FALSE;

 .
 .
 .

 case NFY_INCHAR:
 switch (modeOutput)
 {
 case OMD_COM1:
 case OMD_COM2:
 fHandled = (BOOL)ComIn();
 break;

 default:
NEW if (fStackTrace)
NEW fHandled = (BOOL)' '; // Return a SPACEBAR press
NEW // to produce stack trace
NEW else
NEW fHandled = (BOOL)'i'; // Return an I key press to

NEW // ignore the FatalExit
NEW
NEW // Do not produce the stack trace a second time at the
NEW // "Abort, Break, Ignore" message. Ignore FatalExit this time
NEW fStackTrace = !fStackTrace;
 }
 break;

 .
 .
 .

Additional reference words: 3.10 RIP
KBCategory:
KBSubcategory: KrDebugstacktr

PRB: One Cause of Fatal Exit 0x0140
Article ID: Q75359
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

SYMPTOMS
 The debugging version of Windows 3.0 reports FatalExit 0x0140.

CAUSE
 A module with no heap (such as a no-data dynamic link library) uses
 LocalAlloc to allocate local memory. Even if the application does
 not call LocalAlloc directly, application startup code in the C
 run-time libraries allocates memory to store the command-line
 arguments.

RESOLUTION
 Make sure that the proper library is specified on the LINK command
 line.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrDebugFatlexit

PRB: Strange UAE in Windows 3.00
Article ID: Q75502
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

SYMPTOMS
 The application is terminated without problems; however, running
 Microsoft Excel or Word for Windows results in either an
 unrecoverable application error (UAE) or the computer hangs.
 Analysis of Dr. Watson logs indicate a general protection fault
 at:

 SetHandleCount + 58

 The problem occurs with Windows version 3.0 in standard mode with
 large applications, or multiple executables and DLLS (dynamic-linked
 libraries) with at least one of the DLLs being a large-model DLL.

CAUSE
 Windows version 3.0 does a scan of the LDT (local descriptor table)
 and selects an invalid selector.

RESOLUTION
 The problem disappears in Windows version 3.0 if the application
 performs a GlobalCompact(-1) call.

 Microsoft has confirmed that this problem has been resolved in
 Windows version 3.1.

Additional reference words: 3.00 3.10 3.x
KBCategory:
KBSubcategory: KrDebugGpfaults

PRB: One Cause of Fatal Exit 0x001A
Article ID: Q75737
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

SYMPTOMS
 Closing an application or dynamic-link library (DLL) causes Windows
 to issue the undocumented fatal exit 0x001A.

CAUSE
 The application or DLL has registered a window class with the
 CS_GLOBALCLASS style. The fatal exit is issued when Windows
 terminates the application or DLL that registered the class, when a
 window of that class is still open.

RESOLUTION
 Ensure that all windows of any classes registered by an application
 or DLL are closed before the application or DLL is terminated.

More Information:

Applications and DLLs can register window classes that are visible to
all applications by using the class style CS_GLOBALCLASS. This style
is most commonly used in custom-control DLLs that are meant to be
shared by multiple applications.

When a task (that is, an application) terminates, all classes
registered by that application are unregistered. In addition, DLLs
that were implicitly loaded by the terminating application are freed
if only the terminating application is using the DLL. In a similar
fashion, during the unload sequence of a DLL, any classes that it
registered are also unregistered.

Windows keeps an internal count of windows created with a specific
class. If this count is not zero when a class is unregistered, Windows
reports fatal exit 0x001A.

Additional reference words: 3.00 RIP 1A MICS3 R3.14
KBCategory:
KBSubcategory: KrDebugFatlexit

INF: Checking for Invalid Global or Local Handles
Article ID: Q77472
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

ISHANDLE is a file in the Software/Data Library that contains the
source code to an application for the Microsoft Windows environment
called HANDLE.EXE and to a dynamic-link library (DLL) called
ISHANDLE.DLL. The DLL exports two functions, IsGlobalHandle and
IsLocalHandle, that validate global and local handles, respectively.
The HANDLE application links into the DLL and tests the two functions.
ISHANDLE calls functions exported by the Tool Helper library and is
compatible with Windows 3.0 and 3.1.

ISHANDLE can be found in the Software/Data Library by searching on the
word ISHANDLE, the Q number of this article, or S13210. ISHANDLE was
archived using the PKware file-compression utility.

More Information:

The IsLocalHandle and IsGlobalHandle functions use functions exported
by the Tool Helper library to validate the given local or global
handle. ISHANDLE uses the LocalFirst and LocalNext functions to walk
the local heap until it finds the desired handle or reaches the end of
the heap. Similarly, ISHANDLE uses the GlobalFirst and GlobalNext
functions to walk the global heap.

For example, the following demonstrates how IsLocalHandle walks the
local heap and validates a specified local handle, hLocalHandle:

 // Declare local variable
 LOCALENTRY leTemp;

 // Allocate a buffer to do the local heap walk
 bFound = FALSE;
 leTemp.dwSize = sizeof(LOCALENTRY);

 // Loop through the local heap until hLocalHandle is found
 if (LocalFirst(&leTemp, wHeap))
 {
 do
 {
 if (leTemp.hHandle == hLocalHandle)
 {
 bFound = TRUE;
 break;
 }
 } while (LocalNext(&leTemp));

 }
 if (bFound)
 return hLocalHandle;
 else
 return NULL;

While the code above illustrates simply validating a handle, an
application can extend the process to gather additional information
about each memory block from the LOCALENTRY or GLOBALENTRY data
structures. For example, an application can build a dynamic list of
information about the heaps.

Additional reference words: 3.00 3.10 softlib ISHANDLE.ZIP
KBCategory:
KBSubcategory: KrDebugMisc

INF: GetDriveType DRIVE_REMOVEABLE Documentation Error
Article ID: Q66394
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

On Page 4-176 of the "Microsoft Windows Software Development Kit
Reference Volume 1" version 3.0, the spelling of the
"DRIVE_REMOVEABLE" return value from the GetDriveType function is
incorrect. It should be spelled DRIVE_REMOVABLE (without the "E"
between "MOV" and "ABLE") to match the spelling in WINDOWS.H.

Microsoft has confirmed that this documentation error has been
corrected on page 368 of the "Microsoft Windows Software Development
Kit Programmer's Reference, Volume 2: Functions" for version 3.1.

Using the documented value name in C source code will cause the
Microsoft C Compiler to produce the following error message during
compilation:

 error C2065: 'DRIVE_REMOVEABLE' : undefined

Additional reference words: 3 3.0 3.00
KBCategory:
KBSubcategory: KrDskDrivetype

INF: Writing Volume Labels to Floppy and Hard Disks
Article ID: Q71498

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

To write a volume label on a floppy or a hard disk, a Windows
application can use the C run-time function _dos_create(). However, if
the disk already has a volume label, _dos_create() fails unless the
old label is first deleted.

SETVOL is a sample in the Software/Data Library that demonstrates
writing a volume label to the disk in drive A. SETVOL makes use of the
Extended File Control Block Structure and uses some in-line assembly
to check whether a volume label exists. If so, SETVOL deletes the
label.

SETVOL can be found in the Software/Data Library by searching on the
word SETVOL, the Q number of this article, or S13006. SETVOL was
archived using the PKware file-compression utility.

Additional reference words: 3 3.0 3.00
KBCategory:
KBSubcategory: KrDskVollabels

PRB: Windows Applications Cannot Share File Handles
Article ID: Q22379
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

SYMPTOMS
 One application initializes a file, and receives the handle of
 x '0005'. The application then takes the handle and places it into
 global memory. The SetClipboardData function is then called using
 a format returned by the RegisterClipboard function. A second
 application then opens the Clipboard and retrieves the handle
 correctly; however, when the application tries to write to the
 handle, MS-DOS returns AX=0000, indicating that it did not write
 any information.

RESOLUTION
 Applications cannot share file handles. This is a feature of the
 MS-DOS filing system.

 The file handle table is part of each application's environment;
 the file handle itself is an offset into this table. Although an
 offset of 5 might be valid for two applications, the file
 information at that offset in the respective file handle tables
 will be very different.

 Passing the filename to the second application is recommended.

Additional reference words: TAR60849 2.x 2.00 2.03 2.10 2.x 3.00 3.10 3.x
KBCategory:
KBSubcategory: KrFileioFileshare

FIX: sopen() Fails When Called from a Windows DLL
Article ID: Q72458

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9102002

SYMPTOMS
 When the sopen function is called from a Windows dynamic-link
 library (DLL), the file sharing flags are ignored.

CAUSE
 The sopen function refers to a C run-time library variable,
 _osmajor, to determine whether file sharing is supported. This
 variable is not initialized in the DLL version of the Microsoft C
 version 6.0 run-time libraries.

RESOLUTION
 Microsoft has confirmed this to be a problem in the Microsoft C
 run-time libraries for DLLs provided with the Windows Software
 Development Kit version 3.0. To avoid this problem, declare an
 unsigned char variable, _osmajor, in a module that uses the sopen
 function and assign the variable a value of 3 or higher.

 This problem was corrected in the Microsoft C/C++ Optimizing
 Compiler version 7.0.

Additional reference words: 3.00 6.00 7.00
KBCategory:
KBSubcategory: KrFileioFileshare

INF: Limits on the Number of Open Files
Article ID: Q81577
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

Because an application developed for the Windows graphical environment
runs only within the MS-DOS environment, the number of files that the
application can open is subject to two distinct limits imposed by
MS-DOS. This article discusses these limits.

More Information:

The first limit on the number of open files is imposed by a table of
SFT data structures (System File Tables) within MS-DOS. The initial
number of SFTs is specified in the FILES= line of the CONFIG.SYS file.
MS-DOS version 5.0 does not provide a function to change the number of
SFTs in the table. However, some applications, including Windows,
contain the information necessary to change the size of the table.

The SFT table is global, that is, it is shared by all applications or
tasks that are active in the system. (Each task is represented by a
PSP or program segment prefix.) The exception to the global nature of
the SFT table, and the associated limit on the number of open files,
in introduced by Windows. Different groupings of applications, called
virtual machines (or VMs), have a "per VM" address space. This allows
a virtual machine to have a local portion of the SFT table, which
exists only in that VM. Because all graphical applications in the
Windows environment run in a single VM, only the MS-DOS (not
graphical) applications run in separate VMs.

MS-DOS does not support more than 255 SFTs. Therefore, it does not
support more than 255 open files at any time in any specific VM. The
SHARE utility, which extends MS-DOS core functionality, does not
support the ability to increase the size of the SFT table on a "per
VM" basis under Windows, because SHARE must, at any time, in any VM,
be able to enumerate all open SFTs in the entire system.

The second limit on the number of open files involves a "per
application" table, called the JFN table, which is stored in each
task's PSP. By default, the JFN in the PSP has room for 20 entries,
which limits each application to 20 open files. An application running
on MS-DOS version 3.3 and subsequent versions can change the size of
the JFN by calling MS-DOS INT 21h function 67h. This call allocates a
new JFN table and modifies values in the PSP to indicate the larger
size of the JFN table. This allows the application corresponding to a
particular PSP to open more than 20 files, provided that the global
SFT table, shared by all applications, has available SFTs.

The two limits work together as follows. First, to open a file, the
application must have a place available in its JFN table. Second,

MS-DOS must have an available SFT in its internal SFT table. Note that
if either of these requirements is not met, the OPEN (or CREATE) INT
21h call will fail with error 4.

Additional reference words: 3.00 3.30 5.00
KBCategory:
KBSubcategory: KrFileioSethandle

INF: File Manager's Mechanism for Sensing File System Changes
Article ID: Q67725
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The Windows version 3.0 File Manager automatically updates its
directory information any time a Windows or a non-Windows application
creates, renames, or deletes a file.

This information is not available for use by application developers,
and there are no future plans to make this information public.

Additional reference words: 3 3.0 3.00
KBCategory:
KBSubcategory: KrFileioMisc

INF: Windows OpenFile Function vs. C Run-Time
Article ID: Q11988
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

In Windows, the OpenFile function creates an MS-DOS file handle
through which an application can access Windows-specific files.
OpenFile initially opens the file in binary raw mode by performing an
MS-DOS Interrupt 21h Function 3Dh. If the lpFileName parameter
specifies only a filename and an extension, OpenFile searches for a
matching file in the following directories:

 - The current directory.

 - The Windows directory. The GetWindowsDirectory function returns the
 path to this directory.

 - The Windows system directory . The GetSystemDirectory function
 returns the path to this directory.

 - The directories listed in the PATH environment variable.

The open, fopen, and sopen functions provided by the Microsoft C run-
time libraries and the _lopen function provided by Windows can be used
to access any file. The open functions do not necessarily open a file
in binary raw mode; the application is required to set the binary
attribute explicitly. The OpenFile function automatically performs
this step.

If the filename parameter specifies only a filename and extension,
the open functions search for a matching file only in the current
directory.

An application should use the OpenFile function any time an MS-DOS
file handle is required.

Additional reference words: 2.x TAR56861
KBCategory:
KBSubcategory: KrFileioFileapi

BUG: sopen() Fails When Called From a Windows DLL
Article ID: Q68942
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The sopen() function provided by Microsoft C versions 6.0 and 6.0a is
listed as being compatible with Windows dynamic-link libraries (DLLs).
However, when sopen is called from a DLL, it ignores the file-sharing
flags and fails to perform as documented.

More Information:

When it is called from a DLL, sopen() refers to the C library variable
_osmajor to determine if the MS-DOS version is 3.0 or later. These
versions of DOS support file sharing. When sopen makes this check,
_osmajor contains the value 0 (zero), and sopen ignores the file-share
flags. The _osmajor variable is 0 because no C run-time library
initialization is performed for Windows DLLs.

This problem can be avoided by performing the following two steps
before using sopen():

1. Declare an unsigned char _osmajor.

2. Assign _osmajor the value 3 or higher.

Microsoft has confirmed this to be a problem in Windows versions 2.03
and 2.1 and in the DLL libraries for Windows version 3.0. We are
researching this problem and will post new information here as it
becomes available.

Additional reference words: 2.03 2.10 3.00 6.00 6.00a
KBCategory:
KBSubcategory: KrFileioFileshare

INF: Updating Cached Private Profiles (.INI Files)
Article ID: Q68827
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

Under Windows version 3.1, the first time a private profile
(.INI file) is accessed, the system will call the GetFileTime
function and store this value. The WriteProfileString function will
then call the GetFileTime function and compare the return value to
the stored value. If the two values match, the file is considered
valid for two seconds. The function makes the changes and writes the
new contents to disk. If the two values do not match, the profile is
reread into a buffer and the change is made. The same principle holds
true for reading values from a private profile.

The reasoning behind the two second limit is that most applications
read private profiles in a burst, at application startup, and write in a
burst, at application shutdown. The penalty of one read in a twenty
read sequence is considered acceptable, given the benefits.

In Windows version 3.0, an application that has a private profile
will not respond to changes made to that private profile by a text
editor. When a text editor updates a private profile, the file on disk
is modified. However, the GetPrivateProfileString and
GetPrivateProfileInt functions do not read from the disk file,
instead the functions read from a copy of the file in a cache.
The WritePrivateProfileString and WritePrivateProfileInt functions
will update the appropriate sections in both the cached file and the
disk file, however, the functions will not reload the disk file into
the cache unless the entire cache is invalidated. The information
included below discusses how to force a private profile to be recached
from a disk file.

More Information:

Windows caches .INI files to reduce access time. This design allows
the file to remain in memory until a different .INI file is loaded or
until an application forces recaching of the file.

To force an .INI file to be recached, make the following call (where
<fname.ini> is the name of the application's private profile):

 WritePrivateProfileString(NULL, NULL, NULL, <fname.ini>)

This call will force the entire .INI file that is in the cache to be
invalidated. The next call to either the GetPrivateProfileString or
GetPrivateProfileInt functions will cause the disk file to be recached.

While .INI files are cached to optimize access time, the following are
examples of how and when an .INI file could be recached.

1. The application could update the cache from disk each time the
 application requires information from the profile. Calling the
 WritePrivateProfileString function as outlined above would clear
 the cache.

 Note: Because the file is recached with every access, the benefit
 of the cache is lost with this method.

2. Create a separate program or function that the user would invoke to
 explicitly invalidate the cache. The following is some code for
 that purpose that could be placed into the GENERIC sample
 application supplied with the Windows Software Development Kit
 (SDK):

 BOOL InitInstance(HANDLE hInstance, int nCmdShow)
 {
 LPSTR lpApplicationName, lpKeyName, lpDefault, lpReturnedString;
 int nSize;

 /* initialize variables */
 ...

 WritePrivateProfileString(NULL, NULL, NULL, "MY.INI");
 GetPrivateProfileString(lpApplicationName, lpKeyName,
 lpDefault, lpReturnedString, nSize, "MY1.INI");
 MessageBox(NULL, "Cache Refreshed", szApp,
 MB_ICONINFORMATION | MB_OK);
 return TRUE;
 }

 Using a program or function like this will cause the .INI file to be
 recached only when it is changed by an editor, therefore the benefit
 of the cache is retained. However, it is necessary for the user to
 call another application or function after the profile is changed
 with an editor.

3. If neither of these techniques is suitable, the application could
 check the time and date stamp on the .INI file before each access to
 see if cache invalidation is necessary. This option provides the
 benefits of the cache without requiring the user to call another
 program. The overhead required to read the time and date stamp is
 minimal compared to recaching the file with every call to either
 the GetPrivateProfileString or GetPrivateProfileInt functions.

Additional reference words: 3.00 3.10 3.x SR# G910109-169
KBCategory:
KBSubcategory: KrFileioMisc

INF: Handling Critical Errors in a Windows Application
Article ID: Q69027
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The Windows SetErrorMode() function controls whether Windows handles
MS-DOS Function 24H errors or allows the calling application to handle
them. Listed below is an example of an MS-DOS Function 24H error and
Windows's method for handling the error: if an application attempts to
access drive A and there is no disk in that drive, Windows displays
the System Error message box "Cannot read from drive A: (Cancel)
(Retry)."

Calling SetErrorMode() allows the application to handle these messages
rather than defaulting to the System Error message box.

The following code fragment demonstrates this process:

 SetErrorMode(1); // Allow application to handle system error
 ...
 /* If error occurs, handle it appropriately. */
 ...
 SetErrorMode(0); // Windows will display the standard
 // INT 24H error message box for any other
 // System Errors.

For more information on a problem in Windows version 3.0 with extended
error handling, query on the following keyword:

 WIN9012019

Additional reference words: 3 3.0 3.00
KBCategory:
KBSubcategory: KrFileioMisc

INF: Opening Files, Compatibility Mode and Windows
Article ID: Q74445
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

Opening a file in compatibility mode is a very unfriendly action in a
multitasking environment such as Windows. There is never any need to
do this; compatibility mode provides support for old MS-DOS
(non-Windows) applications however it does not provide additional
functionality.

Use the following four guidelines for opening files:

1. Do not use the _lcreate function, it opens files in compatibility
 mode. If it is necessary to create a file, immediately close the
 file and then reopen it with the _lopen function.

2. Do not use the OF_SHARE_COMPAT option with the _lopen or OpenFile
 functions. Instead, use one of the other OF_SHARE defines. If no
 OF_SHARE value is specified, the file is opened in compatibility
 mode.

3. When creating a file using MS-DOS interrupts 3Ch or 5Bh, after
 creating the file, close it and then open it again. The create
 leaves it in compatibility mode.

4. When opening a file (MS-DOS interrupts 3Dh or 6Ch), make sure that
 the file is NOT opened in compatibility mode.

When specifying the open mode and share, do not request more access
than required. If a file will only be read, open it in read-only mode
EVEN IF EXCLUSIVE ACCESS IS REQUESTED. Do not lock out other access
unnecessarily. If an application will only read a file, allow other
applications to read the file as well.

Finally, be open to alternatives when opening a file. If a file is
being opened to display its contents and an open READ-ONLY, DENY-WRITE
fails, try an open READ-ONLY, DENY-NONE.

Additional reference words: 3.00 create open READ-ONLY share
KBCategory:
KBSubcategory: KrFileioFileshare

INF: Using OpenFile with Sharing and Inheritance Bits
Article ID: Q43397
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

The following information describes the file-access, file-sharing, and
inheritance codes used with MS-DOS Interrupt 21h Function 3Dh that are
compatible with the Windows OpenFile function.

A call to the OpenFile function that specifies OF_CREATE as the value
for the wStyle parameter is translated into a call to the MS-DOS
Create File with Handle function (Interrupt 21h Function 3Ch). Because
Windows does not pass any style bits (other than OF_CREATE) to MS-DOS,
the file is always created with normal attributes.

A call to the OpenFile function that does not specify OF_CREATE is
translated into a call to the MS-DOS Open File with Handle function
(Interrupt 21h Function 3Dh). Windows places the value of the low-
order byte of the wStyle parameter into the AL register to specify
file-access and file-sharing codes.

Note: The sharing bits take effect only if the MS-DOS SHARE utility is
running on a system.

Additional reference words: 2.03 2.10 3.00 3.10 2.x SR# G880926-3697
KBCategory:
KBSubcategory: KrFileioFileapi

INF: Application Dynamically Links to a DLL Using a Class
Article ID: Q85282
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

The traditional methods an application uses to dynamically link to a
dynamic-link library (DLL) in the Windows environment, using the
LoadLibrary and FreeLibrary functions, can be awkward. The application
is required to call GetProcAddress for each DLL function the
application links to, and the application is then required to store
the returned address in an array. The source code of the application
must also contain a prototype for each called function or the
programmer must cast each function parameter to the required type.

The object-oriented techniques of Microsoft C/C++ version 7.0 can be
applied to ease the process of dynamically linking with a DLL. An
application can define a class that links to the DLL and contains
pointers to each of the exported functions. Member functions of the
class correspond to the exported functions in the DLL.

DYNDLL is a file in the Software/Data Library that demonstrates using
a class, called CDynDLL, to dynamically link to a DLL. The CDynDLL
constructor loads the library and retrieves pointers to each function
exported by the DLL. The CDynDLL destructor frees the library. The
member functions of the CDynDLL class correspond to the functions
exported by the DLL.

DYNDLL can be found in the Software/Data Library by searching on the
word DYNDLL, the Q number of this article, or S13450. DYNDLL was
archived using the PKware file-compression utility.

Additional reference words: destructer constructer 3.10 softlib
DYNDLL.ZIP
KBCategory:
KBSubcategory: KrFileioFileshare

PRB: C Run-Time locking Function Causes Sharing Violations
Article ID: Q85284
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

SYMPTOMS
 The locking function in the Microsoft C run-time library may cause
 a sharing violation when it is called under the following
 conditions:

 - The locking function is called from a dynamic-link library
 (DLL).

 - The DLL is stored on a network drive.

 - The locking function is called with the LK_UNLCK parameter to
 unlock a specified number of bytes.

 - The unlocked bytes were not previously locked with a call to the
 locking function with the LK_LOCK parameter.

CAUSE
 This error is the result of incorrect usage and should not be
 considered a problem with the Windows Software Development Kit
 (SDK) itself.

RESOLUTION
 This problem occurs only with the libraries provided with the
 Windows SDK version 3.0. To work around this problem, rewrite the
 code that calls the locking function to unlock only bytes that have
 been previously locked.

More Information:

The following code demonstrates the problem described above:

/* Compile options needed: /Gsw /Zp
 * Link options needed: /ALIGN:16
 */

#include <windows.h>
#include <io.h>
#include <fcntl.h>
#include <sys\locking.h>
#include <share.h>
#include <errno.h>

int _far _pascal LibMain(HANDLE h, WORD ds, WORD hs, LPSTR c)
 {return 1;}
void _far _pascal WEP(int nParam) {}

void _far _pascal testlock(void)
{
 int fd = sopen("m:\\network.fil", O_BINARY | O_RDWR, SH_DENYNO);
 if (fd >= 0)
 {
 int i;
 errno = 0;
 i = locking(fd, LK_UNLCK, 1L);
 close(fd);
 }
}

Additional reference words: 6.0 6.00 6.0a 6.00a 6.0ax 6.00ax 7.0 7.00
KBCategory:
KBSubcategory: KrFileioFileshare

INF: File Input/Output for Windows-Based Applications
Article ID: Q72237
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

An application written to work in a cooperative multitasking
environment, such as that of Microsoft Windows, must be designed to
work within specified constraints. This article discusses these
constraints and the methods used to access files in Windows
applications.

More Information:

The cardinal rule for file I/O in Windows is to not keep a file open
for long periods of time. Specifically, a file should not be kept open
during the processing of more than one message. An application should
open a file, read or write data as appropriate, and close the file
during the processing of one message.

An application can use either of two options to access a file that has
been opened with the OpenFile function:

1. Use the C run-time library file I/O instructions.

2. Use the file I/O instructions provided by Windows.

The file handle returned from OpenFile can be used directly with the C
run-time library "low-level" file I/O functions such as the open,
read, lseek, write, tell, and close functions. One problem with these
functions is that an application cannot use a FAR or HUGE pointer as a
parameter to one of these functions unless the application is
developed using the compact or large memory model. However, these two
memory models are not recommended for applications for the Windows
environment because the data segments must be fixed in memory. To work
around the inability to use a FAR or HUGE pointer, the application
must read data from the file into a local memory buffer and then copy
the data to global memory.

The application can also use the C run-time library buffered I/O
functions: fopen, fread, fwrite, and fclose. The fdopen function
converts the file handle returned by OpenFile to a pointer to a FILE
data structure. Buffered I/O is not very useful in Windows because an
application should read and write large blocks of data to a file.
Buffering is most helpful when small blocks of data are read and
written.

The file I/O functions provided by Windows are: _lopen, _lclose,
_lcreate, _llseek, _lread, and _lwrite. The "l" prefix indicates that
each function accepts a FAR pointer to a buffer, which allows the
application to transfer information in a file directly to global

memory and back. (Although these functions were part of each Windows
release, they were first documented in Windows 3.0.)

Using the Windows file I/O functions is the easier method when data
buffers are stored in global memory. Do not write assembly-language
code to interface directly with the MS-DOS file I/O functions.

If an application uses stream I/O instead of the low-level I/O
functions, the performance of the application may slow. This decrease
in performance is caused by the buffering system used by the stream
I/O functions. When an application calls the fopen function to open a
file, functions in the C run-time library creates a file record that
contains pointers into a stream buffer allocated from global memory.
If the global heap does not have enough free memory to satisfy the
buffer allocation, the I/O operation continues with a one character
buffer.

There are two methods to address this situation. One method is to
reduce the amount of data stored in the global heap. The other method
is to develop the application using the compact or large memory model
(neither of which is recommended in general for applications in the
Windows environment). If the application is developed with an
alternate memory model, it may be advantageous to specify the /Gt
Microsoft C Compiler option switch to remove static data from DGROUP
(the default data segment).

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrFileioFileapi

INF: LZEXPAND.DLL API Documentation
Article ID: Q75472
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

LZEXPAND.DLL is a dynamic-link library that provides functions to
read, expand, and copy both regular files and files compressed by the
Lempel-Ziv encoding program COMPRESS.EXE, provided with the Windows
version 3.0 Software Development Kit (SDK). This article documents
the services provided by LZEXPAND.DLL.

Note: This information applies ONLY to Windows version 3.0. The
services provided in the next version of Windows will have a different
interface.

More Information:

The LZInit, LZOpen, and LZClose functions perform necessary
housekeeping (and open and close files). The LZRead and LZSeek
functions can operate on both compressed and normal files. The
LZCopy function copies files and decompresses them if necessary.

The LZSeek, LZRead, and LZClose functions can determine if the
parameter passed in is a regular MS-DOS file handle or a
compressed-file-information structure identifier, and will act
appropriately. The LZOpenFile, LZSeek, LZRead, and LZClose
functions can be called as replacements for the OpenFile,
_llseek, _lread, and _lclose functions, respectively, without
regard to the compression state of the files.
A detailed explanation of the purpose, syntax, and parameters of each
LZEXPAND.DLL function is listed below:

LZCopy

Syntax: LONG LZCopy(doshSource, doshDest)

 This function copies the source file to the destination file.
 If the source file is compressed, it is decompressed as it is
 copied.

 Parameter Type/Description
 --------- ----------------

 doshSource int Specifies the MS-DOS file handle of the
 source file. The source file may be either
 compressed or uncompressed.

 doshDest int Specifies the MS-DOS file handle of the
 destination file. The destination file will be

 an uncompressed file.

Return The return value is the number of bytes written to the
Value: destination file, or it is one of the LZERROR codes listed
 below.

 Code Description
 ---- -----------

 LZERROR_BADINHANDLE (-1) Invalid input handle
 LZERROR_BADOUTHANDLE (-2) Invalid output handle
 LZERROR_READ (-3) Bad compressed file format
 LZERROR_WRITE (-4) Out of space for output file
 LZERROR_GLOBALLOC (-5) Insufficient memory for buffers
 LZERROR_GLOBLOCK (-6) Bad global handle

Comment: The doshSource and doshDest parameters should be MS-DOS file
 handles returned either by the Windows OpenFile function,
 or by the MS-DOS open file functions (open, _dos_open, or
 _lopen). If the files are opened with the LZOpenFile
 function, the files will be copied properly; however, the
 LZOpenFile call will allocate an unused
 compressed-file-information structure for the compressed
 source file.

 Using the LZCopy function is the fastest way to copy a file
 using LZEXPAND.

LZOpenFile

Syntax: int LZOpenFile(lpFileName, lpReOpenBuf, wStyle)

 This function opens a file using the OpenFile function. If
 the file is opened in read-only mode and it is compressed,
 the LZOpenFile function also calls the LZInit function to
 allocate and initialize a compressed-file-information data
 structure.

 Parameter Type/Description
 --------- ----------------

 lpFileName LPSTR Points to a null-terminated character
 string that names the file to open. The string
 must contain characters from the ANSI
 character set.

 lpReOpenBuff LPOFSTRUCT Points to the OFSTRUCT data
 structure to be used by the OpenFile
 function (for more information, see pages 4-322
 to 4-325 of the "Microsoft Windows Software
 Development Kit Reference, volume 1").

 wStyle WORD Specifies action to be taken by the
 OpenFile function.

Return If the file is opened in any mode other than read-only
Value: or if the file is not compressed, the LZOpenFile function
 returns the return value from the OpenFile function, an
 MS-DOS file handle. If the file was opened in read-only mode
 and it is compressed, the LZOpenFile function returns an
 identifier for the compressed-file-information data structure
 created by the LZInit function. If the file cannot be
 opened, -1 is returned. If the file can be opened, however
 the compressed-file-information data structure cannot be
 allocated, then the file is closed, and -1 is returned.

Comment: Files that are compressed with COMPRESS.EXE have a special
 header. The LZOpenFile function uses this header to
 determine if the file is compressed.

LZInit

Syntax: int LZInit(doshSource)

 This function allocates and initializes a compressed-file-
 information data structure if it is passed a file handle for
 a compressed file.

 Parameter Type/Description
 --------- ----------------

 doshSource int Specifies the MS-DOS file handle returned
 by the OpenFile, _lopen, or open
 functions. The file should have been opened
 read-only.

Return If the file is compressed, an identifier for a compressed
Value: file information structure is returned. If the file is not
 compressed, the MS-DOS file handle is returned. If a read
 error occurs while initializing the data structure, or if
 there is insufficient heap space to allocate the structure,
 -1 is returned.

Comment: Storage for the compressed file information structure is
 allocated from the global heap.
LZSeek

Syntax: LONG LZSeek(hLZFile, lOffset, iOrigin)

 This function repositions the pointer in a previously opened
 file.

 Parameter Type/Description
 --------- ----------------

 hLZFile int Specifies the MS-DOS file handle or the
 identifier for compressed-file-information

 data structure. It is best to open the file by
 calling the LZOpenFile function, which calls
 the LZInit function. However, the normal
 Windows OpenFile function can be used instead,
 followed by a call to the LZInit function to
 allocate and initialize the data structures used
 by the expansion algorithm.

 lOffset LONG Specifies the number of bytes the
 pointer is to be moved.

 iOrigin int Specifies the seek origin as used by
 the _llseek function.

Return The return value is the new position in the file or -1
Value: if the seek is unsuccessful.

Comment: If the file is not compressed, the LZSeek function calls
 the _llseek function with the MS-DOS file handle. If the
 file is compressed, the _llseek function is emulated on the
 expanded image of the file.

LZRead

Syntax: int LZRead(hLZFile, lpBuffer, wBytes)

 If the file specified by hLZFile is not compressed, the
 LZRead function calls the _lread function to read the file.
 If the file is compressed, the file is read, decompressed, and
 copied into lpBuffer until either the EOF is reached or wBytes
 bytes have been written to lpBuffer.

 Parameter Type/Description
 --------- ----------------

 hLZFile int Specifies the MS-DOS file handle or the
 identifier for compressed-file-information
 data structure for file to be read. It is best
 to open the file by calling the LZOpenFile
 function, which calls the LZInit function.
 However, the normal Windows OpenFile function
 can be used instead, followed by a call to the
 LZInit function to allocate and initialize the
 data structures used by the expansion algorithm.

 lpBuffer LPSTR Pointer to the buffer that is to
 receive the data read from the file.

 wBytes WORD Specifies number of bytes to be read
 from file.

Return The return value specifies the number of bytes written
Value: to lpBuffer. It is less than wBytes only if the EOF has been
 reached. If the read fails, the return value is -1.

LZClose

Syntax: VOID LZClose(hLZFile)

 This function closes the file specified by the hLZFile
 parameter. If the file is compressed, the global heap space
 occupied by the compressed file information structure is
 freed.

 Parameter Type/Description
 --------- ----------------

 hLZFile int Specifies the MS-DOS file handle or the
 identifier for compressed-file-information
 data structure for the file to be closed.

Additional reference words: 3 3.0 3.00
KBCategory:
KBSubcategory: KrFileioExpcom

INF: No MS-DOS Extended Error Info for Windows File Functions
Article ID: Q86648
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

When an application uses one of the Microsoft Windows file functions
(_lclose, _lcreat, _llseek, _lopen, _lread, or _lwrite) and an error
occurs, the function returns the HFILE_ERROR error code. No additional
information is available concerning the cause of the error.
Specifically, no MS-DOS error return value is available for these
functions.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrFileioFileapi

PRB: Creating File with Exclusive Access Allows Concurrent Use
Article ID: Q86723
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

SYMPTOMS
 When an application calls the OpenFile function and specifies the
 OF_CREATE and OF_SHARE_EXCLUSIVE flags, the created file is not
 open for exclusive access. Another application can also open the
 file.

RESOLUTION
 To create a file and open it for exclusive access, an application
 must create the file, close the file, and open it for exclusive
 access.

More Information:

The OpenFile function passes its parameters to MS-DOS Interrupt 21h.
OpenFile and Interrupt 21 exhibit the same behavior in this regard.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrFileioFileshare

INF: Determining That SHARE Is Loaded Under Microsoft Windows
Article ID: Q72744
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

To determine whether the SHARE.EXE application is loaded, an
application typically calls MS-DOS Interrupt 2Fh Function 1000h.
However, this method always returns true in enhanced mode Microsoft
Windows version 3.0 even if the SHARE is not loaded.

Windows returns true for Interrupt 2Fh Function 1000h to prevent SHARE
from installing itself in a MS-DOS virtual machine (VM) under Windows.
If SHARE installed a local copy in a VM, the system would become
unstable and data corruption on the hard drive(s) might result.

More Information:

To determine under enhanced mode Windows whether SHARE is installed,
call Interrupt 21h Function 5Ch to lock a region of a file. This
function is available only when SHARE is installed, and unlike using
the OpenFile function with sharing modes, the lock region function
always fails with error 1 (invalid function) if SHARE is not loaded.
Perform the following six steps to determine whether SHARE is loaded:

1. Create a temporary file using MS-DOS Interrupt 21h Function 5Ah.

2. Lock a region of the returned temporary file using MS-DOS Interrupt
 21h Function 5Ch. Set AL = CX = DX = SI = 0 and DI = 1.

3. If the call in step 2 returns with the carry flag set and AX = 1,
 SHARE is not loaded. Move to step 5.

4. SHARE is loaded. Unlock the region of the file using MS-DOS
 Interrupt 21h Function 5Ch. Set CX = DX = SI = 0 and AL = DI = 1.

5. Close the file using MS-DOS Interrupt 21h Function 3Eh.

6. Delete the file using MS-DOS Interrupt 21h Function 41h.

Note that the drive on which the temporary file is created is
important in a network environment. Typically, SHARE is always loaded
for network drives; however, a copy of SHARE is running on the server,
not on the workstation. Therefore, the application should run the test
above against the drive(s) from which it will access files.

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrFileioShare.exe

FIX: SetHandleCount() Causes UAE or Hang
Article ID: Q74512
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9107007

SYMPTOMS
 When an application calls the SetHandleCount function to increase
 the number of available file handles, the application experiences
 an unrecoverable application error (UAE) or the machine hangs. This
 fault generally occurs when the wNumber parameter is set to 80 or
 more.

STATUS
 Microsoft has confirmed this to be a problem in Windows version 3.0
 where there is no way to work around this problem. Do not try to
 use Interrupt 21h function 67h (set handle count) because it does
 not work correctly in Windows 3.0.

 This problem was corrected in Windows version 3.1.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrFileioSethandle

BUG: OpenFile Function Fails on Novell Temp Drive
Article ID: Q87347

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
--

SYMPTOMS
========

In the Microsoft Windows graphical environment, when an application
uses the OpenFile() function to open a file on a Novell network
temporary drive, the function returns the value HFILE_ERROR to
indicate failure.

CAUSE
=====

The OpenFile() function does not properly parse the nonalphabetic
characters that the Novell network redirector uses to represent
temporary drive mappings.

RESOLUTION
==========

To work around this problem, use the _lopen() function to obtain a
file handle.

STATUS
======

Microsoft has confirmed this to be a problem with Windows version 3.1.
We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrFileioFileapi

SAMPLE: Reading the Boot Sector of a Drive
Article ID: Q102870

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 version 3.1
--

SUMMARY
=======

BOOTSEC demonstrates how to use Interrupt 25h (absolute disk read) to
read the boot sector (the first sector on head 0, cylinder 0) off of a
drive (either a floppy disk drive or hard disk).

BOOTSEC checks to see whether the drive is one of the following:

 Drive Detection Method

 CD-ROM Interrupt 2F calls to MSCDEX.
 Net drive Windows API WNetGetConnection().
 RAM drive Checks the boot sector to see if there is one FAT.
 Hard disk Checks the media BYTE of the boot sector. If it is
 equal to 0xF8h then it is a hard disk.
 Floppy disk Checks the media BYTE of the boot sector. If it is
 not equal to 0xF8h and it is not a RAM drive, net drive,
 or CD-ROM drive, then it is a floppy disk drive.

BOOTSEC also shows how to implement a dialog box as a main window
using a private dialog class.

MORE INFORMATION
================

The following information is contained in the boot sector:

 - The jump instruction to the boot strap routine
 - The name of the OEM and the version of MS-DOS
 - Bytes per sector
 - Sectors per cluster
 - Reserved sectors
 - Number of file allocation tables
 - Number of root directory entries
 - Number of sectors
 - Media descriptor
 - Number of sectors occupied by each FAT
 - Number of sectors on a single track
 - Number of read/write heads on the drive
 - Number of hidden sectors
 - Number of huge sectors
 - Whether the disk is the first hard disk drive
 - The boot signature
 - The volume serial number

 - The volume label
 - The file system type

NOTE: The information contained in the boot sector was changed in
MS-DOS 5.0. If this program is run on a disk that was formatted with a
previous version of MS-DOS, then some of the fields in the structure
will not be filled out, and the program may display garbage. The
elements of the structure that were not changed will be displayed
correctly.

BOOTSEC can be found in the Software/Data Library by searching on the
word BOOTSEC, the Q number of this article, or S14214. BOOTSEC was
archived using the PKware file-compression utility.

Additional reference words: 3.10 INT
KBCategory:
KBSubcategory: KrFileioMisc

PRB: File Handles Cannot Be Shared Between Programs or DLLs
Article ID: Q46524
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

SYMPTOMS
 Assume that there are two applications, A and B. Application A
 calls a Dynamic-Link Library (DLL) to open a file. The file pointer
 (FILE * pFIle) is stored on the data segment of the DLL.
 Application A then calls a function in the DLL to read the record
 "n" of this file properly. However, if Application B calls the same
 function in the DLL to read the same record, the record appears as
 random characters.

RESOLUTION
 File handles cannot be shared between applications or DLLs. Each
 application has its own file handle table. When an OpenFile call
 is made, a file is taken out of the application's program segment
 prefix (PSP). For two separate applications to use the same file,
 each application must make its own OpenFile call, file I/O calls,
 and close.

Additional reference words: 2.03 2.10 2.x 3.00 3.10 3.x
KBCategory:
KBSubcategory: KrFileioFileshare

INF: Failure to Load Resources When All File Handles Are Used
Article ID: Q50741
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

A Windows application should not use all available file handles. Doing
so may prevent Windows from being able to load the application's
resources.

When Windows has to open the application's .EXE file to retrieve a
resource (such as the icon's bitmap), it uses one of the application's
file handles. If the application has used all available file handles,
Windows cannot load the resource.

For example, suppose LoadIcon() was called previously to obtain an
icon handle successfully, and the icon is being used as a window's
icon. The rendering of the icon will fail if the application is using
all the file handles. For example, if the window is to be minimized,
the icon will be displayed as a black block on the screen.

Note: LoadIcon() loads in the logical information of the icon; the
bitmap of the icon is not loaded until it is going to be used.

In Windows 2.11 (retail and debug versions), failure to load an icon's
bitmap due to lack of available file handles will hang the system.

Under MS-DOS, an application has 20 file handles when it begins
executing. Five of these handles (that is, STDIN, STDOUT, STDPRN,
STDERR, and STDAUX) are automatically opened for use by the operating
system. This leaves a total of 15 file handles available for an
application. If a Windows application needs more file handles open at
any given time, it can use the SetHandleCount() API.

Additional reference words: 2.03 2.10 3.00
KBCategory:
KBSubcategory: KrFileioSethandle

INF: Do Not Use the MS-DOS APPEND Utility in Windows
Article ID: Q58412
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

The MS-DOS APPEND utility remaps the contents of specified directories
into the current directory, which makes the files of these directories
available to an application. Do not use this utility on systems
running the Windows operating environment because the APPEND utility
is fundamentally hostile to the operation of Windows. The design of
Windows rests on its ability to build a fully-qualified path for each
file it opens.

More Information:

When Windows opens an application file (for example, WINWORD.EXE), it
stores the fully-qualified path of this file (for example,
D:\WINWORD\WINWORD.EXE). With this information, Windows can reopen the
file even if user or application activity changes the current drive
and current directory.

The problem with the APPEND utility is that it prevents Windows from
reliably determining the proper fully-qualified path to a file. If an
application calls the open function when C:\EXCEL is the current drive
and directory, and the D:\WINWORD directory is specified in the APPEND
search path, Windows may improperly record the fully-qualified path to
the WINWORD.EXE file as follows: C:\EXCEL\WINWORD.EXE.

In this situation, when Windows reopens the file later, it receives an
error from MS-DOS because the file is not actually located in the
drive and directory indicated by the stored fully-qualified path. When
Windows detects this error, it displays the Change Disk message box.

The APPEND utility can cause similar problems for the WINOLDAP module,
which runs MS-DOS (non-Windows) applications under Windows. These
problems can result in unexpected "File Not Found" errors, failure to
start an MS-DOS application, failure when the MS-DOS application
exits, or failure when the user tries to switch back to Windows.

The current versions of all the major application software available
today do not require the APPEND utility. The MS-DOS version 4.0 and
4.01 installation programs usually add the APPEND utility to the
user's configuration, which consumes valuable application memory
without providing any benefits to the end user. The APPEND utility is
usually found in the AUTOEXEC.BAT file. The line with APPEND can
be removed or commented out by placing the word "remark" at the
beginning of the line.

Additional reference words: 3.00 3.10

KBCategory:
KBSubcategory: KrFileioMisc

INF: Incomplete Description of SetErrorMode() Function
Article ID: Q100305

Summary:

The description of the SetErrorMode function does not list the flag to
reset the default behavior of Windows; that is, to display all the
error message boxes.

More Information:

On page 840, the Microsoft Windows Software Development Kit (SDK)
"Programmer's Reference, Volume 2: Functions" manual for version 3.1
lists the following three flags for the SetErrorMode function:

 SEM_FAILCRITICALERRORS
 SEM_NOGPFAULTERRORBOX
 SEM_NOOPENFILEERRORBOX

These flags can be combined to prevent the display of message boxes
for critical error faults, general protection (GP) faults, and
file-not-found errors, respectively. However, the SetErrorMode
function description doesn't list the default flag that is used to
display all the error message boxes.

To allow the SetErrorMode function to display all the error message
boxes, pass a zero as the fuErrorMode parameter.

Additional reference words: 3.1 3.10 INT 24h File-I/O
KBCategory:
KBSubcategory: KrFileIomisc

BUG: OpenFile Fails When UNC Server Name Longer than 11 Chars
Article ID: Q101414

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
--

SYMPTOMS
========

OpenFile() successfully opens files with universal naming convention
(UNC) names when the server portion of the name is 11 characters or
shorter, but fails to open files when the server name is longer than
11 characters. Error code number 2, "File not found," is placed in the
nErrCode member of the OFSTRUCT structure passed to OpenFile.

CAUSE
=====

OpenFile() validates filenames before opening them, and in the case of
UNC names, allows server names that are 11 characters or shorter only.
No attempt is made to open a file with a UNC name longer than 11
characters.

RESOLUTION
==========

To open files with UNC names when the server name is longer than 11
characters, use _lopen().

STATUS
======

Microsoft has confirmed this to be a problem in the Windows SDK
version 3.1. We are researching this problem and will post new
information here in the Microsoft Knowledge Base as it becomes
available.

Additional reference words: 3.10 buglist3.10 WFW NETWORK
KBCategory:
KBSubcategory: KrFileioFileapi

INF: Sharing Files with Windows for Workgroups Clients
Article ID: Q101421

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit version 3.1
 - Microsoft Windows for Workgroups version 3.1
--

SUMMARY
=======

Multiple applications, each running in Windows for Workgroups version
3.1 on different workstations, can share a file residing on a server
with full read-write access while simultaneously keeping the file
open. File region locking ensures that data integrity of the file is
not lost. The Windows for Workgroups network redirector caches file
I/O operations unless file locking is used. It will seem that Windows
for Workgroups clients are failing to write data unless the
applications lock file regions.

MORE INFORMATION
================

Opening a file with READ_WRITE access and using the OF_SHARE_DENY_NONE
file sharing flag is possible from more than one application each
running from a different workstation. Applications sharing a file from
a server must use the same file sharing flags. Keeping the file open
may be a necessary specification for networked database management
systems because it is more efficient to keep the file open than to
open and close the file for each file-access operation. However, not
all applications should be designed to keep the file open during the
use of a file.

To better understand file sharing, consider an application running on
Workstation A opening a file that resides on the disk of Server S. An
application running on Workstation B can also open the same file so
that each application is aware of the updates made to the file on
Server S if the file is opened with READ_WRITE access and the
OF_SHARE_DENY_NONE sharing flag.

To ensure that two or more applications do not access the shared file
in the same region at the same time, locking is used to create
exclusive access to a region of the file. File region locking by one
application causes failure of file I/O operations performed by other
applications sharing the file. The sharing component of Windows for
Workgroups, VSHARE.386, keeps track of the region that is locked and
fails the file I/O operation attempting to access the shared file,
including any portion of the locked region. This is very critical to
file sharing; if one application is writing information into a
location of a shared file at the same instance another application is
reading from the same location of the shared file, there is a loss of
data integrity.

In Windows for Workgroups, file I/O operations are redirected to the
server drive via the network redirector component, VREDIR.386 (in
enhanced mode) or WORKGRP.SYS (in standard mode). The network
redirector of Windows for Workgroups caches file I/O operations. The
redirector will disable the cache if file locking is enabled, and
therefore even if two applications are sharing files and are being
careful so that there is no file access concurrency, Windows for
Workgroups will still fail to perform the file I/O unless file locking
is used. One application reading from the file will not be reading the
latest updates from the application writing to the file or data will
not seem to be written to disk.

The following summarizes key points when implementing applications to
share files residing on a server for full read-write access.

 - Open the file with READ_WRITE access and OF_SHARE_DENY_NONE sharing
 flag.

 - Before reading or writing, lock the region of the file about to be
 accessed. Use _locking() from the Microsoft C run-time library or
 MS-DOS Interrupt 21h function 5Ch to lock the file region.

 - Immediately following a read or a write, unlock the region. Use
 _locking() or Interrupt 21h function 5Ch to unlock the file region.
 For courtesy to other applications using the file, do not exclude the
 use of a file region for a long period of time. Lock the file region
 only during accessing (reading or writing).

 - If the lock fails, this means that some portion of the region of
 the file is locked by another application. The application is not
 allowed access to this region until the other application releases it
 by unlocking the region.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrFileioFileshare

PRB: File Attributes/Date/Time Fail to Set on Open File
Article ID: Q102554
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) versions 3.0 and
 3.1
 - Microsoft Windows for Workgroups version 3.1
--

SYMPTOMS
========

When using MS-DOS function 5701h (set file date and time) along with
function 4301h (set file attribute) while the file is currently open,
the date and time fail to be set without error. This problem occurs
when the file resides on a drive that is shared by Windows for
Workgroups version 3.1.

RESOLUTION
==========

To work around the problem, the application should set the time and
date of the file while the file is open, close the file, and then set
the file attribute.

STATUS
======

Microsoft has confirmed this to be a problem in Windows for Workgroups
version 3.1. We are researching this problem and will post new
information here in the Microsoft Knowledge Base as it becomes
available.
MORE INFORMATION
================

This operation is commonly performed by copy-file routines implemented
to preserve the time and date stamp as well as the file attributes of
the source file when creating the destination file. The copy-file
routine can read the file time, date, and attributes of the source
file and then set the same on the destination file. If the file is
being created on a network shared drive that is served by Windows for
Workgroups version 3.1, the problem mentioned above will occur. The
problem does not occur if only the file time and date are being set or
if only the file attributes are being set while the file is still
open. There is no reason to keep a file open when setting the
attributes because the function refers to the file by a string
containing the filename, and not by a file handle.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrFileioAttribs

INF: The
Article ID: Q102640
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

SUMMARY
=======

Running an application in the Microsoft Windows operating environment
may produce a system modal dialog box containing the following error
message:

 Segment Load Failure

The error occurs inconsistently due to the cached file handle
mechanism of Windows version 3.1.

MORE INFORMATION
================

During the life of a Windows application, Windows may need to load
discarded code or resource segments or LOADONCALL segments for the
first time. To load the segment, Windows uses file I/O functions to
read the information from the .EXE file. If Windows has any errors
opening the .EXE file, it will produce the error message:

 Segment Load Failure

Possible reasons opening the .EXE file fails are:

 - The filename was changed, deleted, or otherwise corrupted since
 the application was first started.

 - The .EXE file resides on a shared drive and is opened exclusively or
 in compatibility mode by another workstation running the
 application.

 - The .EXE file resides on a shared drive and is opened exclusively or
 in compatibility mode by another application for some purpose other
 than running the .EXE.

 - The system has run out of available file handles.
The error message may occur inconsistently or not at all due to the
mechanism used by Windows for caching file handles. The .EXE file is
referred to by a file handle. By default, Windows caches 12 file
handles for the most recently used files. If Windows subsequently
opens more files than what the cache can hold, the cache closes the
least recently used file handles. The error does not occur if Windows
uses a cached file handle to refer to the file, but will occur if the
file handle is no longer in the cache.

The file handle cache is a system-wide mechanism and not a

per-application mechanism. The number of cached file handles can be
changed by the CachedFileHandles switch in the [boot] section of the
SYSTEM.INI file. For more information regarding CachedFileHandles, see
the SYSINI.WRI file in the Microsoft Windows Resource Kit.
Additional reference words: 3.10
KBCategory:
KBSubcategory: KrFileioMisc

INF: How OF_SHARE Modes Affect Opening Files
Article ID: Q104498
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 versions 3.0 and 3.1
--

The following modes have an effect only if SHARE is loaded:

OF_SHARE_COMPAT (same as specifying no sharing flags, thus its name):
If the file has not been opened in any other sharing mode, the current
task may open the same file in OF_SHARE_COMPAT mode any number of
times. If the current task attempts to open the file in any other
sharing mode, the open will fail. If other tasks attempt to open the
file with any sharing mode, the open will fail. If the file has the
read-only file attribute, other tasks may open the file in
OF_SHARE_COMPAT mode any number of times.

OF_SHARE_DENY_WRITE: If the file has not been opened in any other
sharing mode, any task may open the file any number of times in
OF_SHARE_DENY WRITE. Attempting to open the file in any other sharing
modes will fail.

OF_SHARE_DENY_READ: If the file has not been opened in any other
sharing mode, any task may open the file any number of times in
OF_SHARE_DENY_READ. Attempting to open the file in any other sharing
modes will fail.

OF_SHARE_EXCLUSIVE: If the file has not been opened in any other
sharing mode, the file will be opened. Any additional attempts to open
the file in any sharing modes by any task will fail.

OF_SHARE_DENY_NONE: If the file has not been opened in any other
sharing mode, any task may open the file any number of times in
OF_SHARE_DENY_NONE. Attempting to open the file in any other sharing
modes will fail.

Additional reference words: 3.00 3.10 share file open dos
KBCategory:
KBSubcategory: KrFileioFileshare

INF: Windows Code Module to Delete Files
Article ID: Q96789
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

The DELTEST sample contains a complete code module to delete one or
more files by using wildcards. The sample also demonstrates how to use
wildcards to search through an entire directory.

DELTEST can be found in the Software/Data Library by searching on the
word DELTEST, the Q number of this article, or S14123. DELTEST was
archived using the PKware file-compression utility.

More Information:

The C run time contains a function to delete one file, but does not
allow a program to delete multiple files using wildcard characters.
The DELETE.C module included with this sample can be used with any
application or dynamic-link library (DLL) to perform this operation.
This module uses the _dos_findfirst/next functions in conjunction with
the remove() function to allow multiple files to be erased.

Note: In the sample, if "Delete tmp Files" is selected from the menu,
the two .TMP files included with the sample will be erased.

For information on how to call the Delete() function, please refer to
the comment block inside of DELETE.C.

Additional reference words: 3.x DelTest DELETE.C
KBCategory:
KBSubcategory: KrFileioFileapi

PRB: DLL Function Returns Float or Double Value Incorrectly
Article ID: Q86081
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

SYMPTOMS
 When a function using the C calling convention and exported from a
 dynamic-link library (DLL) returns a data value of type float,
 double, or long double, the calling application receives unexpected
 values. This behavior occurs in applications developed with the
 Microsoft Windows Software Development Kit (SDK) version 3.0 or 3.1
 or with version 1.0 of Microsoft QuickC for Windows.

CAUSE
 The pointer used to return a floating-point result under the C
 calling convention is invalid once control returns to the
 application.

RESOLUTION
 Declare the DLL function using the Pascal calling convention or
 allocate memory from the global heap to hold the floating-point
 result and return the handle from the DLL function.

More Information:

The DLL and any application that calls the DLL each have separate
floating-point accumulators. When an application calls a DLL function
declared with the Pascal calling convention, the application allocates
space on the stack to receive the returned data type. The DLL function
pushes the value onto the stack for the application to use.

When an application calls a DLL function that uses the C calling
convention, no stack space is allocated because the calling function
cleans up the stack. Under the C calling convention, the DLL function
returns a pointer (in DX:AX) to the floating-point accumulator, which
contains the result. However, once the application regains control,
the pointer is not valid.

The code examples below demonstrate returning a float value under the
C and Pascal calling conventions:

C Calling Convention

// C calling convention - DLL
// Compile options required: /Asw /G2sw /Zp

HANDLE _far floatcalc(float fl1, float fl2);

HANDLE _far floatcalc(float fl1, float fl2)
{
 HANDLE hFloat;
 float _far *pFloat;

 hFloat = GlobalAlloc(GMEM_MOVEABLE, sizeof(float));
 pFloat = (float _far *)GlobalLock(hFloat);
 *pFloat = fl1 * fl2;
 GlobalUnlock(hFloat);
 return hFloat;
}

// C calling convention - Application
// Compile options required: /AS /G2sw /Zp

extern HANDLE _far floatcalc(float fl1, float fl2);

void Calc(void)
{
 float _far *pFloat, fl;
 HANDLE lFloat;

 lFloat = floatcalc((float)3.0, (float)4.1); // Call DLL function
 pFloat = (float _far *)GlobalLock(lFloat);
 fl = *pFloat;
 GlobalFree(lFloat);
}

Pascal Calling Convention

// Pascal calling convention - DLL
// Compile options required: /Asw /G2sw /Zp

float _far _pascal FloatCalc(float fl1, float fl2);

float _far _pascal FloatCalc(float fl1, float fl2)
{
return fl1 * fl2;
}

// Pascal calling convention - Application
// Compile options required: /G2sw /Zp

extern float _far _pascal FloatCalc(float fl1, float fl2);

void Calc(void)
{
 float temp;

 temp = FloatCalc((float)3.1, (float)4.2); // Call DLL function
}

Additional reference words: qcw qcwin 1.00 3.00 3.10
KBCategory:
KBSubcategory: KrFltptMisc

INF: Applications and the Math Coprocessor Under Windows
Article ID: Q43276
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

When an application for Microsoft Windows is run on a machine with a
math coprocessor, the application can use inline floating-point
instructions to take the fullest advantage of the hardware.

More Information:

Specifying the -FPi option on the C compiler command line causes the
Microsoft C optimizing compiler to produce inline 80x87 math
coprocessor code for any floating-point math operation. If this code
is linked with the WIN87EM.LIB library and a math coprocessor is
present in the system at run time, the application will use the inline
floating-point instructions for its math operations. If no coprocessor
is available at run time, code in the emulator library evaluates
floating-point expressions.

An application compiled for the MS-DOS environment with the -FPi
option checks for the coprocessor at run time and modifies its code
accordingly: if there is a coprocessor, it uses inline floating-point
instructions; if there is no coprocessor, it calls software routines
to emulate the coprocessor.

In the Windows environment, these run-time modifications are not
performed because the Windows kernel fixes up the floating point
references as it loads the application's code segments (the kernel is
aware of the presence or absence of the numeric coprocessor). This
means that an application for the Windows environment compiled with
the -FPi option will perform direct, inline floating-point
instructions without run-time coprocessor-checking. Consequently,
there is no need to link in the Microsoft C Compiler inline floating-
point module, which removes the run-time coprocessor-checking.

Additional reference words: 1.03 1.04 2.03 2.10 3.00 3.10 1.x 2.x
KBCategory:
KBSubcategory: KrFltptCmplropts

INF: EMS Support in Windows Version 3.00 and 3.10
Article ID: Q57954
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

The information listed below discusses the following topics:

1. Windows version 3.x support of EMS.

2. Utilization of the services of an already-installed LIM EMS
 (Lotus/Intel/Microsoft Expanded Memory Support) version 4.0 driver,
 such as a "limulator" or hardware EMS board by Windows version 3.x.

3. Making EMS calls from a non-Windows application.

4. Making EMS calls from a Windows application.

More Information:

1. Windows version 3.x support of EMS.

 Windows version 3.x has three modes: real mode, standard mode, and
 enhanced mode. Of the three, only enhanced mode provides EMS. This
 is because "limulation" [simulation of LIM (Lotus/Intel/Microsoft)]
 requires hardware support that only the Intel 80386 provides; the
 8086 and 80286 do not have the necessary combination of protected
 mode addressing and virtual 8086 emulation (provided by the 80386's
 V86 mode).

2. Utilization of the services of an already-installed LIM EMS
 (Lotus/Intel/Microsoft Expanded Memory Support) version 4.0 driver,
 such as a "limulator" or hardware EMS board by Windows version 3.x.

 Real mode Windows can take advantage of either a limulator or a
 hardware EMS board.

 Windows version 3.0 standard mode (which runs in 80286 protected mode)
 cannot use a limulator because these drivers run in 80386 protected
 mode, thereby conflicting with the standard mode's need to switch into
 protected mode. However, if the machine has a hardware EMS board
 and associated LIM version 4.0 driver installed, any EMS calls made
 will be serviced by the EMS driver; however, Windows itself will
 not use the EMS memory in any way. Only small frame EMS is
 supported in protected mode.

 In Windows version 3.1, it is possible to start limulators such as
 QEMM, 386MAX and EMM386 in standard mode. All support for EMS from
 protected mode Windows applications has been dropped from Windows

 version 3.1 enhanced mode. Any INT67H calls made by a Windows
 application in enhanced mode under Windows version 3.1 will result
 in an error being returned.

 Enhanced mode is incompatible with preinstalled EMS drivers that
 cannot be "shut off" by Windows. If the EMS driver is a limulator
 that cannot be shut off, Windows will not be able to run in
 enhanced mode because the 80386 is already running in protected
 mode; limulators that can be shut off respond to Windows as it
 boots, turning themselves off and letting Windows manage the EMS
 that they had been managing.

 Physical LIM memory is not supported by 386 enhanced mode Windows.
 Software running in Virtual 8086 mode in any VM (virtual machine),
 including the system VM (which contains all the Windows
 applications), can make LIM version 4.0 calls; however, the calls
 will be handled by Windows/386, not by any previously installed LIM
 driver. No LIM calls are reflected; they are all handled (error or
 successful completion) by V86MMGR. As mentioned above, only small
 frame EMS is supported in protected mode.

3. Making EMS calls from a non-Windows application.

 If EMS is present, non-Windows applications have the full LIM
 version 4.0 specification available for their use. Running in
 enhanced mode, part of the mappable page array may not be usable;
 therefore, applications have to be sensitive to what is usable in
 the mappable page array and what is not; they cannot assume that
 all of the mappable page array is available.

4. Making EMS calls from a Windows application.

 If EMS is present, the normal small-frame EMS calls work as they do
 in Windows version 2.x (that is, applications can make LIM version
 3.2 calls plus LIM version 4.0's realloc function). This allows
 both Windows versions 2.x and 3.x applications to use EMS memory.

 CAUTION: In protected mode, the standard technique of querying for
 the presence of an EMS driver by examining the contents of
 interrupt vector 67H will fail due to virtualization of memory and
 virtualization of the IDT (interrupt description table). Therefore,
 applications will have to use the alternate technique of opening a
 file handle using the name of the EMS device driver. For more
 information on these techniques, please consult Chapter 9 of Ray
 Duncan's "Advanced MS-DOS" book (Microsoft Press, 1986), which is
 the chapter on memory management under MS-DOS. This chapter
 contains a discussion on EMS that describes how to check for the
 presence of an EMS driver.

 Windows version 3.x applications that use EMS when running in
 protected mode will be slower than non-EMS-using applications, and
 may run out of memory faster. If it is necessary to run a Windows
 version 2.x application that requires EMS under Windows version
 3.x, this can easily be done in enhanced mode. When designing a new
 application for Windows version 3.x, however, the programmer should
 take advantage of the new protected mode addressing scheme rather
 than trying to use EMS.

 CAUTION: In protected mode, the value returned as the location of
 the page frame is a selector, not a segment. Therefore,
 applications cannot make any assumptions about that value. Many
 EMS-using applications, besides encountering the inefficiency of
 using EMS, will probably run into other restrictions that will not
 allow them to run in protected mode. For example, they cannot put
 code into EMS unless they implement special handling in protected
 mode to create a code selector alias for the page frame selector.

 For enhanced mode, there are SYSTEM.INI entries that correspond to
 the same entries in the .PIF file. The Control Panel does not touch
 them. We do not expect many programmers to need to do anything with
 these at all. See the PIFEDIT documentation for information on the
 meanings of possible values.

 Example:

 ; The following variables perform the equivalent of the XMS and
 ; EMS memory PIF settings for the SYS VM:
 ;
 SYSVMEMSLIMIT Max value (default is -1)
 SYSVMEMSREQUIRED Min value (default is -1)
 SYSVMEMSLOCKED Is the EMS touched under interrupt or needed
 to be in memory at all times for some other
 reason? (default is NO)
 SYSVMXMSLIMIT Max value (default is -1)
 SYSVMXMSREQUIRED Min value (default is -1)
 SYSVMXMSLOCKED Is the EMS touched under interrupt or needed
 to be in memory at all times for some other
 reason? (default is NO)

 Related switch:

 EMMSIZE Controls the maximum amount of memory
 that will be used for EMS across all
 VMs (default is -1, no limit).

Additional reference words: 2.03 2.10 2.x 3.00 3.10 3.x
KBCategory:
KBSubcategory: KrIsrtsrDosdrvs

INF: How to Get a Pointer to the Stack
Article ID: Q11941
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The following information applies to Windows versions 2.x and 3.0.

C pushes its parameters in reverse order (right to left) for the
_cdecl calling convention (default) and in order (left to right) for
the Pascal calling convention.

The first (or last, for the Pascal convention) parameter is always the
last one pushed, and always has the same address relative to the start
of the frame.

In the C compiler documentation, see vsprintf and the va_start macro
in STDARG.H for an example of accessing variable arguments on the
stack.

To get a pointer to the stack, use the following code:

 far MyFunction()
 {
 int x;
 int far *y = &x;
 }

Note that this pointer will not be valid when the function is exited,
since the stack contents will change.

Additional reference words: 2.0 2.1 3.0
KBCategory:
KBSubcategory: KrMmMisc

INF: How Windows Resolves Far Calls When Movable Flag Is Used
Article ID: Q11979
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

The following information applies to Windows versions 2.0, 2.03, and
2.1. This information only applies to Windows versions 3.0 and 3.1
in real mode.

The information listed below addresses the following topics relating
to using the middle model of compilation (-AM) when a module's code
segment has been renamed using the -NT switch, and the segment is
declared movable in the module definition (.DEF) file:

1. Locking of the code segment by Windows

2. The handling of FAR calls

Windows does not necessarily keep the code segment locked. The
Microsoft C Compiler uses the BP register as a "frame pointer". Local
variables and parameters are always accessed using offsets from the BP
register. The BP register is initially even, and the Windows stack is
word aligned. When a FAR call is made, BP is increased by one. If the
code segment is discarded, the stack is walked and patched. By
determining if BP is odd or even, Windows can tell whether the call is
FAR or NEAR.

When a long return address is on the stack, it has a pushed DS and BP,
and because the BP register is increased by one for FAR frames, FAR
frames may be detected by walking the task chain and BP stack-frame
chains.

When the Windows prolog is set up, it does the following:

 extern far pascal funcname();

 cProc funcname,<FAR,PASCAL>
 "cBegin"
 Prolog: push ds ; Fixed/Moveable Multiple Data Segment Support
 pop ax
 nop
 inc bp ; Far Frame Marker/Moveable Code Support
 push bp
 mov bp,sp
 push ds ; Data Context Switch Code
 mov ds,ax ; "

 ...

 "cEnd"
 Epilog: sub bp,2
 mov sp,bp
 pop ds ; Data Context Switch Code
 pop bp
 dec bp ; Far Frame Cleanup
 ret

Additional reference words: TAR56803 2.00 2.03 2.10 2.x 3.00 3.10
KBCategory:
KBSubcategory: KrMmRealmode

INF: Global Lock Count Changes in Windows 3.x
Article ID: Q61285
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

The global lock count mechanism has been changed in the Windows
version 3.x protected modes (that is, standard mode and enhanced
mode). The GlobalLock function only affects the lock count of
discardable objects and the default data segment (DGROUP); movable
objects are not affected. Thus, repeated calling of the
GlobalLock and GlobalFlags functions on a GMEM_MOVEABLE object
does not show any changes to its lock count.

More Information:

The following are reasons and explanations concerning this design
change:

1. In real mode, the GlobalLock function fixes the segment:offset
 of a global memory object. It also increases the lock count, as
 reported by the GlobalFlags function.

2. In protected mode, the far pointer returned by the GlobalLock
 function is a selector:offset, not a segment:offset. Because the
 selector value does not change, the GlobalLock function does
 not actually fix the memory object in the physical address space.
 Thus, the GlobalLock function in protected mode does not change
 the lock count, unless the object is discardable or is a default
 data segment.

 In the case of a discardable object, the lock count is meaningful,
 because Windows needs to know when the object can be discarded
 (which is when its lock count is zero).

3. However, some applications have used the GlobalLock lock count
 as a "reference count" [that is, as an indication of how many times
 the GlobalLock function was called]. If the lock count for an
 object goes to zero, these applications might consider the object a
 candidate for being manually discarded, perhaps after copying the
 data to disk.

 Unfortunately, this use of the GlobalLock function as a reference
 count keeper does not work in protected mode. Applications that
 symmetrically pair calls to the GlobalLock function with calls to
 the GlobalUnlock function do not need to know the lock count, and
 therefore, are unaffected by this change in behavior.

4. How does an application keep track of reference counts now, given

 that the GlobalLock approach does not work for nondiscardable
 objects in protected mode? The application should really keep track
 of reference counts itself, which should not be hard to do because
 the application in need of this functionality will have a table of
 global handles anyway.

 However, if the application cannot be modified to maintain its own
 reference counts, then there is a new Windows function, called
 GlobalFix, that will accomplish this functionality. The
 GlobalFix function performs the following functionality:

 a. It fixes the object in the protected mode linear space.

 b. It increments the "lock count", as returned by the
 GlobalFlags function.

5. The following includes more information about the GlobalFlags
 function. In real mode, it returns the GlobalLock lock count.
 In protected mode, if the object is discardable, the GlobalFlags
 function also returns the GlobalLock lock count. In protected
 mode, if the object is nondiscardable, the GlobalFlags function
 returns the GlobalFix reference count. In other words, the
 GlobalFlags function always returns the lock/fix count. However,
 in protected mode, the GlobalLock and GlobalUnLock functions
 do not affect the count, only the GlobalFix and GlobalUnFix
 functions do.

 Note: In real mode, the GlobalFlags lock count actually indicates
 the sum of GlobalLock's and GlobalFix'es. Therefore, if the
 programmer is calling GlobalLock's and GlobalFix'es in pairs,
 then the GlobalFlags lock count actually is twice the logical
 reference count, if in real mode.

6. If the application needs to keep track of reference counts, and the
 programmer wants Windows to do the work for them, then the
 programmer must accompany every call to the GlobalLock function
 with a call to the GlobalFix function. This way the programmer
 will be able to depend on the validity of the GlobalFlags'
 lock/reference count. However, using the GlobalFix function just
 to keep track of the reference count is overkill, if that is all
 the programmer wants it to do. Remember, the GlobalFix function
 also fixes the object in the protected mode linear address space.
 The price the programmer pays for having Windows keep track of the
 reference count (by using the GlobalFix function) is the following:

 a. Every time the GlobalLock or GlobalUnLock function is called,
 the programmer must also call either the GlobalFix or
 GlobalUnFix function.

 And, much worse:

 b. The programmer establishes sandbars in the linear address space.

 An application should either keep track of reference counts on its
 own or always pair GlobalLock calls with matching
 GlobalUnlock calls; the use of the GlobalFix function should
 be avoided.

 Very few applications should need to fix global objects in linear
 space; therefore, few applications should need to use the
 GlobalFix function.

7. If the programmer needs to unconditionally unlock and free a global
 memory object of any type, then code similar to the following can
 be used:

 /* 1. Make it discardable if necessary. */
 if (GlobalFlags shows that it is nondiscardable)
 GlobalRealloc (GMEM_MODIFY it to be discardable);

 /* 2. Remove any lock counts that might be on it. */
 while (GlobalUnlock != 0) /* keep unlocking it */
 ;

 /* 3. Free it. */
 GlobalFree()

Additional reference words: 3.00 3.10 3.x
KBCategory:
KBSubcategory: KrMmFixlockwire

INF: WINMEM32 Not Version Dependent
Article ID: Q73666
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

WINMEM32 is a dynamic-link library (DLL) designed to run in Microsoft
Windows enhanced mode to provide support for 32-bit flat memory model
code under Windows. While WINMEM32 is not bound to a particular
version of Windows, it does require enhanced mode.

New versions of WINMEM32 that might become available in the future
should not affect the ability to use old versions of WINMEM32 on a
given system. Note, however, that only one version of WINMEM32 can be
loaded at a time.

Newer versions of WINMEM32 will be backward compatible with older
versions. Because you should upgrade to the new version, if possible,
it is very important that WINMEM32 applications do not tightly version
bind to WINMEM32. An application should always use the greater-than-
or-equal-to operator (>=), never the equal-to operator (==), to
compare the result of the WINMEM32 GetWinMem32Version function to the
required version.

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrMmWinmem32

INF: Heap Placement in Memory
Article ID: Q12245
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The Windows system uses LocalInit(ds,0,size_in_bytes) to align the
heap. The first 16 bytes in DS are the NULL segment. It contains a
block of "reserved pointers." These are the heap pointers. The heap is
located in DS by subtracting the size of the heap from the end of
DGROUP and filling in the start of the heap pointer with the resulting
offset from the end of DGROUP. This procedure avoids data-stack/heap
collision.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: KrMmLocalmem

INF: Overview of How to Share Memory Between Applications
Article ID: Q64126
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

Listed below are three ways to share memory between Windows
applications; these are the only methods that are guaranteed to work
in all memory configurations and in future versions of Windows:

1. Using the Clipboard
2. Storing information in the data segment of a shared Dynamic-Link
 Library (DLL)
3. Dynamic Data Exchange (DDE)

More Information:

1. The Clipboard is the easiest method to use, and is discussed in
 the Windows Software Development Kit (SDK) as well as in such books
 as Charles Petzold's "Programming Windows."

2. Sharing data in the data segment of a DLL is possible because
 there is only one data segment for all instances of the DLL; DLLs
 are not "instanced." Because of this, it is possible to have the
 DLL do a LocalAlloc() out of its local heap, which is part of its
 DGROUP and thus is limited to 64K. Programmers must determine
 the memory scheme that best suits their needs and what calls they
 will make to the DLL to copy/share that memory to other applications
 that call into it.

3. DDE is designed to allow applications that follow the protocol to
 share/pass data back and forth. An "envelope and letter" analogy,
 which is listed below, provides an example of how this works:

 If some information needs to be sent from one person/application
 to another person/application, do the following:

 a. Address the envelope: Call GlobalAlloc() on a piece of global
 memory with the GMEM_DDESHARE flag.

 b. Write the letter on a piece of paper: Call GlobalLock() and
 write to the global memory.

 c. Seal the letter: Call the GlobalUnlock() function.

 d. Send the letter off to the other person: Use the PostMessage()
 function with a WM_DDE_DATA message that has the hGlobalMemory
 in it.

 To receive and read the letter, the other person/application

 does the following:

 a. Get the letter: A WM_DDE_DATA message is found in the message
 queue, along with the handle of the global memory,
 hGlobalMemory.

 b. Open the envelope: Call GlobalLock (hGlobalMemory).

 c. Make a copy of the letter and read it:

 1) Create a new envelope: Call GlobalAlloc(hNewEnvelope) and
 use the GMEM_DDESHARE flag IF the letter needs to be sent
 back.

 2) Open the new envelope: Call GlobalLock(hNewEnvelope).

 3) Copy the contents of the old letter to the new letter,
 modifying the contents at this time if necessary.

 4) Seal the envelope: Call GlobalUnlock().

 If the person/application wants to send the letter back to
 the person/application that originally sent the letter, perhaps
 with some answers to questions asked in the original letter, the
 following procedure should be used:

 5) Send the letter: Call PostMessage() with the new handle to
 global memory.

 d. When done with the old letter, throw it away: Use GlobalUnlock()
 on the handle and then call GlobalFree().

 According to the DDE specification, the rules for freeing the
 global memory object are as follows:

 Receiver deletes memory unless either of the following is true:

 1) fRelease flag is zero.

 2) The fRelease flag is 1; however, the receiving (client)
 application responds with a negative WM_DDE_ACK message.

 For more information, please refer to Chapter 15 in the
 Windows SDK reference manual.

For more information on sharing memory, please refer to Chapters 15
and 16 of the "Microsoft Windows Software Development Kit Guide to
Programming."

For more information on DDE, please refer to Chapter 22 of the
"Microsoft Windows Software Development Kit Guide to Programming."

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMmSharedmem

INF: Accessing Physical Memory Using Kernel Exported Selectors
Article ID: Q64151
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

In Windows version 3.0, the Kernel exports a number of selectors that
Windows programs can use to access commonly used hardware memory. The
exported selectors include the following:

 __0000h, __0040h, __A000h, __B000h, __B800h, __C000h,
 __D000h, __E000h, __F000h

The four letters after the leading "__" represent the real mode
address that the selector is for. Each of the selectors has a 64K
limit.

In order to use one of these selectors, implement one of the following
methods:

Method 1

If the code is being written in assembler, declare the selector
variable as follows:

 extrn MySelector:ABS
 (or "externA MySelector" using C-macros)

Then import the selector in the definition file, as follows:

 IMPORTS MySelector = KERNEL.__B000h

In the same program, if the C routines need to use the selector value,
another global selector may be declared across the assembly code and
the C code. Then, assign "MySelector" to the variable in the assembly
code.

Method 2

Declare an extern variable in the C routine and then use the address
of the extern variable as the selector. For example:

 extern WORD _MyB000h ;
 #define MySelector (&_MyB000h)

Now the variable MySelector can be used to access segment B000h.

Remember to import it using the correct name (one more underscore).
For example:

 IMPORTS
 __MyB000h = KERNEL.__B000h

Method 3

GetProcAddress can also be called with the Kernel's module handle and
the name of the selector. The lower word of the return value is the
selector value.

More Information:

There are no protections on these selectors. Any other Windows program
can access them at the same time. It is strongly recommended to use
these selectors only in a Windows dynamic-link library (DLL). By
accessing the hardware memory only through a DLL, the Windows
application is given the maximum hardware independence. This method
also minimizes possibilities of conflicts caused by different Windows
applications trying to access the same memory at the same time.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMm

INF: Minimizing Lock and Unlock Calls in Protected Mode
Article ID: Q74197
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

When Microsoft Windows is running in protected mode (standard mode or
enhanced mode), the selector of a movable memory block does not change
even though Windows may move the block in physical (standard mode,
enhanced mode) or linear (enhanced mode) memory.

Applications that run only in protected mode can take advantage of
this behavior to minimize the number of GlobalLock and GlobalUnlock
calls.

More Information:

The following code demonstrates how to allocate a global memory
object:

 HANDLE hMem;
 LPSTR lpstr;

 if ((hMem = GlobalAlloc(GMEM_MOVEABLE, cb)) != NULL)
 if ((lpstr = GlobalLock(hMem)) != (LPSTR)NULL)
 {
 // use the memory
 }

The following code demonstrates how to free the global memory object
allocated above:

 if (GlobalUnlock(hMem) != (HANDLE)NULL)
 GlobalFree(hMem);

Leaving movable global memory objects locked does not impose a memory
consumption penalty in protected mode.

This technique is not appropriate for an application that runs in real
mode under versions of Windows prior to version 3.1. In real mode,
Windows manages a limited amount of memory (less than 640K) by moving
and discarding memory blocks. When an application locks a memory
block, Windows cannot move or discard the block. Therefore, an
application that runs in real mode must lock an object only while the
object is in use.

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrMmFixlockwire

INF: Real Mode Not Supported by Windows 3.1
Article ID: Q78326
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

Support for real mode has been removed from Windows 3.1. Many
applications designed for Windows 3.0 do not support real mode. The
reasons behind this trend toward protected mode include superior
memory management and smaller, faster application code.

More Information:

The remainder of this article lists the advantages and disadvantages
of removing support for real mode from applications.

Advantages of Removing Real Mode Support
--

1. Protected mode code is smaller, cleaner, and more maintainable.
 These factors lead to a faster, more responsive, more reliable,
 system. Code is smaller and cleaner for the following reasons:

 a. The 286 and higher processors can track memory locations in
 hardware, which makes locking and unlocking memory objects
 unnecessary. An object can be locked once when it is allocated
 and unlocked just prior to being freed. Because the object can
 move in memory even when it is locked, it is not necessary to
 bracket each access to an object with lock and unlock calls.

 b. Far functions can use simplified function prolog and epilog
 code. For more information on this aspect of protected mode,
 query on the following words:

 prod(winsdk) and protected and streamlined

 c. Because protected mode code is restricted to running on 286 and
 higher processors, the Microsoft C Compiler -G2 switch can be
 used to generate smaller and faster application code.

2. Protected mode (both standard and enhanced mode) breaks the "640K
 barrier." Furthermore, under enhanced mode, Windows uses paged
 virtual memory to expand available memory by using the system hard
 disk as a swapping device. The large address space allows
 applications to have more code and data and allows users to run
 more applications.

3. Testing is easier because there are fewer Windows modes to test. To
 fully test a product that runs under real mode, five separate modes
 must be tested. Real mode itself contributes three of those modes:
 real mode with no expanded memory, real mode using the small-frame

 Expanded Memory Specification (EMS) and real mode using the large-
 frame EMS. The other two modes are standard mode and enhanced mode.
 Because support for real mode has been eliminated, the same amount
 of testing effort can concentrate on producing a better product. It
 also provides an opportunity to develop and test additional
 enhancements. For more information on EMS, query on the following
 words:

 prod(winsdk) and ems and developers

4. Based on a survey of Windows developers, most developers are
 targeting only protected mode because Windows performance on 8086-
 based and 8088-based machines is not satisfactory. Furthermore,
 these machines cannot address more than 640K of RAM.

5. "Wild writes," write-accesses to memory that incorrectly modify a
 memory location, can frequently be detected in protected mode
 through the mechanism of a GP-fault (an unrecoverable application
 error). It is not possible to detect these errors under real mode.
 These GP-faults provide information about application bugs before
 the application is released.

For the reasons mentioned above, Microsoft is removing support for
real mode from Windows 3.1. For these same reasons, many developers
have also removed support for real mode from applications developed
for Windows 3.0. Applications that are written to support only
protected mode should be marked with the Resource Compiler's -T switch
to prevent the application from loading in real mode.

Removing support for real mode also benefits the end user because
applications run faster and are more reliable. While small
applications run quickly in real mode, larger applications run slowly.
However, in protected mode, large applications also run quickly. A
collection of large and small applications can be run simultaneously
without any loss in speed. For example, when more applications are
running simultaneously than can fit in the physical memory installed
in the system, the paging mechanism (only available in enhanced mode)
intelligently manages virtual memory to keep the most-frequently used
memory pages in physical memory. This management speeds up the system.

Disadvantages of Removing Real Mode Support

1. The installed base of 8088-based and 8086-based machines cannot
 use the software.

2. Code that performs segment arithmetic cannot be used in protected
 mode. Therefore, some drivers and DOS programs that run in real
 mode must be rewritten for protected mode, or they cannot be run
 under Windows 3.1.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrMmRealmode

INF: Shrinking Heap Space
Article ID: Q21581
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

When an application calls LocalAlloc() and there is not enough memory
within the application's data segment, Windows will use memory from
the global heap to append this to the application's data segment.
Releasing the memory that was temporarily requested then becomes an
issue to the programmer.

For example, an initial HEAPWALK shows 12000 bytes free. After a 4K
LocalAlloc() and LocalLock(), HEAPWALK shows 4000 bytes locked and
8000 free. Then the program allocates and locks another 10K piece;
HEAPWALK shows 4000 bytes locked, 8000 free, and 10000 locked. If the
program then deallocates the 4K and 10K blocks with unlock and free,
HEAPWALK shows a free 12000 bytes and a free 10000 bytes. The
programmer then has the problem of releasing the second free 10K
block.

Using the LocalShrink() function will compact and shrink the data
segment to the smallest size possible. LocalShrink() cannot move FIXED
or locked blocks when compacting the local heap. Therefore, there may
still be free space in the heap, and the size of the heap may not be
as small as requested after calling LocalShrink(). However, this
function will compact as much as possible, given this constraint.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: KrMmLocalmem

INF: Speed Differences Between WIN /3, WIN /2, and WIN /R
Article ID: Q49732
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The following information describes why WIN /3 and WIN /R run slower
than WIN /2.

WIN /3 is slower than WIN /2 because it runs in 80386 protected mode
and virtualizes all devices and I/O operations. WIN /3 also provides
demand-paged virtual memory using the hard disk to swap paged-out RAM;
this feature involves extra validity checking and disk swapping when
page faults occur, which takes some extra time.

WIN /R is slower because it has limited memory space (the 640K maximum
provided by MS-DOS), and therefore, must perform a lot of moving and
discarding of code and data segments when the memory space is
"overcommitted" by the system and running applications.

WIN /2 is fastest because although it runs in the protected mode of
the 80286 and is somewhat slowed down by that, it has MUCH more memory
available for applications to run in; therefore, less moving and
discarding of code and data segments is necessary. The speed gains of
WIN /2 compared to WIN /R depend on how much extended memory is on the
machine and how much is needed by the system and all running
applications. For example, where WIN /R has to discard and move some
segments to make room for a new application to run, WIN /2 simply
allocates more of the global heap, which consists of all available
extended memory.

Some of these factors apply to Windows versions 2.x (2.03, 2.1, 2.11)
as well as Windows version 3.0. For example, Windows/386 versions 2.x
run in protected mode and virtualize devices and I/O, which slows
things down. However, Windows/286 versions 2.x run in real mode and
gain speed from that. On the other hand, Windows/386 versions 2.x
provide Lotus/Intel/Microsoft Expanded Memory Specification (LIM EMS)
version 4.0 to applications, which allows more applications to fit in
memory at the same time. However, Windows/286 does not provide its own
EMS memory for applications, instead relying on an already-installed
EMS board or "limulator" to provide it. If the system does not have
any EMS memory, Windows/286 is forced to discard and move memory more
often.

KBCategory:
KBSubcategory: KrMmMisc

FIX: GlobalReAlloc() Fails in Enhanced Mode
Article ID: Q66366

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9012024

SYMPTOMS
 The GlobalReAlloc() function fails to allocate requested memory
 even when there is enough memory available in the system to satisfy
 the request.

RESOLUTION
 Create a function, MyGlobalReAlloc(), to use for this purpose.
 MyGlobalReAlloc() should perform four steps:

 1. Call the system GlobalReAlloc() function to perform the
 operation. If the system function succeeds, the operation is
 complete.

 2. If the system function fails, call GlobalAlloc() to allocate a
 new memory block.

 3. If GlobalAlloc() succeeds, copy the contents of the old memory
 block to the new block and free the old block.

 4. If GlobalAlloc() fails, there is no memory available in the
 system to satisfy the request.

 Microsoft has confirmed this to be a problem in Windows version
 3.00. We are researching this problem and will post new information
 here as it becomes available.

Additional reference words: 3.0
KBCategory:
KBSubcategory: KrMmGlobalmem

INF: Validating Local Handles
Article ID: Q80864
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

In Windows version 3.0, the local memory manager functions
LocalFlags(), LocalLock(), LocalReAlloc(), LocalSize(), and
LocalUnlock(), are documented to return NULL if passed an invalid
handle. However, under Windows 3.0, passing an invalid handle to one
of these functions can result in a non-NULL return value or an
unrecoverable application error (UAE).

This article demonstrates a technique that an application can use to
avoid this type of error.

More Information:

Although Windows does not automatically verify local memory handles,
it is possible to verify structures in the local heap by placing a
verification number in the structure. To verify the structure, check
the value of this special number. The following code demonstrates this
technique:

 // Declare the structure

 #define VERIFY 47
 typedef struct tagDataStruct {
 int nData; // Declare the data
 int nVerify; // Declare the verification number
 } DataStruct;

 // Allocate a structure

 HANDLE AllocStruct(WORD wFlags)
 {
 HANDLE hLMem;
 DataStruct *pLMem;

 // Allocate the structure
 if (!(hLMem = LocalAlloc(wFlags, sizeof(DataStruct))))
 return 0;

 if (pLMem = (DataStruct *) LocalLock(hLMem))
 {
 pLMem->nVerify = VERIFY;
 LocalUnlock(hLMem);
 return hLMem;
 }

 return 0;
 }

 // Verify a handle to the structure

 BOOL IsValidStruct(HANDLE hStruct)
 {
 WORD wDS;
 WORD wDSSize;
 DataStruct *pStruct;
 BOOL bReturn;

 // Get the size of the Data Segment
 // This is used to make sure that handles and pointers are
 // within the Data Segment to avoid UAEs
 _asm {
 mov ax, ds
 mov wDS, ax
 }
 wDSSize = (WORD)GlobalSize(LOWORD(GlobalHandle(wDS)));

 // Check that the handle is in the DS
 if (wDS < hStruct)
 return FALSE;

 // Lock the handle
 pStruct = (DataStruct *)LocalLock(hStruct);

 // Check that the pointer + (the size of the structure) is in
 // the DS and that pStruct is not NULL
 if (wDS < (WORD)pStruct + sizeof(DataStruct) || !pStruct)
 {
 LocalUnlock(hStruct);
 return FALSE;
 }

 // Check the verification number
 if (pStruct->nVerify == VERIFY)
 bReturn = TRUE;
 else
 bReturn = FALSE;

 LocalUnlock(hStruct);

 return bReturn;
 }

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMmLocalmem

INF: Allocation Limit on WINMEM32 Global32Alloc() Function
Article ID: Q73677
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

WINMEM32 is a dynamic-link library (DLL) that is designed to support
the 32-bit flat memory model under Windows enhanced mode.

The largest block of memory that Global32Alloc() can request is (16
megabytes -- 64K). Global32Alloc allocates memory through the Windows
kernel, which imposes this particular size limitation.

Adding the ability to process larger allocations is under
consideration for a future version of Windows.

Additional reference words: 3.0
KBCategory:
KBSubcategory: KrMmGlobalmem

PRB: Segment Was Discardable Under 3.0 Notification
Article ID: Q81546
 --
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

SYMPTOMS
 The debugging version of Microsoft Microsoft Windows version 3.1
 writes the following notification to the debugging terminal:

 Segment was discardable under 3.0

CAUSE
 One or more code segments of a dynamic-link library (DLL) are
 marked MOVEABLE and are not marked DISCARDABLE.

RESOLUTION
 Modify the module definition (.DEF) file for the DLL to mark all
 MOVEABLE code segments as DISCARDABLE.

More Information:

Under Windows version 3.0, MOVEABLE code segments in a DLL are
DISCARDABLE by default. This behavior changes under Windows 3.1;
segments must be marked DISCARDABLE to be discarded. The debug
notification highlights the change in behavior between the two
versions of Windows.

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrMmMemattribs

INF: GetCodeInfo() Documented Incorrectly
Article ID: Q67650
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

Pages 4-159 and 4-160 in the "Microsoft Windows Software Development
Kit Reference Volume 1" incorrectly documents the GetCodeInfo()
function. Below is the corrected documentation for this function.

More Information:

 GetCodeInfo [3.0]

 Syntax void GetCodeInfo(lpProc, lpSegInfo)

This function retrieves a pointer to an array of 16-bit values
containing information about the code segment that contains the
function pointed to by the lpProc parameter.

Parameter Type/Description
--------- ----------------

lpProc FARPROC Is the address of the function in the segment for
 which information is to be retrieved. Instead of a
 segment:offset address, this value can also be in the form
 of a module handle and segment number. The GetModuleHandle
 function returns the handle of a named module.

lpSegInfo LPVOID Points to an array of eight 16-bit values that
 will be filled with information about the code segment.
 See the following 'Comments' section for a description of
 the values in this array.

Return Value None.

Comments The lpSegInfo parameter points to an array of eight
 16-bit values that contains such information as the
 location, size, and handle of the segment and its
 attributes. The following list describes each of these
 values:

Offset Description
------ -----------
 0 Specifies the logical-sector offset (in bytes) to the
 contents of the segment data, relative to the beginning of
 the file. Zero means no file data is available.

 1 Specifies the length of the segment in the file (in bytes).
 Zero means 64K.

 2 Contains flags which specify attributes of the segment. The
 following list describes these flags:

 Bit Meaning
 --- -------
 0-2 Specifies the segment type. If bit 0 is set to 1, the
 segment is a data segment. Otherwise, the segment is
 a code segment.

 3 Specifies whether segment data is iterated. When this
 bit set to 1, the segment data is iterated.

 4 Specifies whether the segment is movable or fixed.
 When this bit is set to 1, the segment is movable.
 Otherwise, it is fixed.

 5-6 Is not returned.

 7 Specifies whether the segment is a read-only data
 segment or an execute-only code segment. If this bit
 is set to 1 and the segment is a code segment, the
 segment is an execute-only segment. If this bit is
 set to zero and the segment is a data segment, it is
 a read-only segment.

 8 Specifies whether the segment has associated
 relocation information. If this bit is set to 1, the
 segment has relocation information. Otherwise, the
 segment does not have relocation information.

 9 Specifies whether the segment has debugging
 information. If this bit is set to 1, the segment has
 debugging information. Otherwise, the segment does
 not have debugging information.

 10-15 Is not returned.

 3 Specifies the total amount of memory allocated for the
 segment. This amount may exceed the actual size of the
 segment. Zero means 65,536.

 4 Contains the handle of the segment. Zero means the segment is
 not loaded.

 5 Contains the shift count to turn logical sector into byte
 offset in the file.

 6-7 Reserved.

KBCategory:
KBSubcategory: KrMmMemattribs

INF: Implementing Linked Lists with Handles in Windows
Article ID: Q25064
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The standard method when using C in a non-Windows environment is to
use pointers to reference the next link in the chain. Using pointers
in the Windows environment requires that the LMEM_FIXED flag be used
with LocalAlloc() so heap compaction will not affect the internal
pointer references. Problems will occur using this technique as
members of the chain are added and deleted.

More Information:

Implementing a heap compaction to free space will be difficult (or
impossible). Therefore, handles should be used instead of pointers to
reference successive list members in the Windows environment. Handles
will allow the allocated heap data to be moved; no LMEM_FIXED is
needed. When data in the chain must be referenced, LocalLock() is
called using the member's handle. To traverse the linked list, do
the following:

1. Given an initial handle to the chain link, call LocalLock().

2. Use the address returned by LocalLock() to access the link's data
 and get the handle of the next link in the chain.

3. Call LocalUnlock() for the current link.

4. If not at the end of the chain, go to step 1 using a new handle.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: KrMmLocalmem

INF: Windows 3.1 Standard Mode and the VCPI
Article ID: Q82298
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

Windows 3.1 standard mode is compatible with expanded memory managers
such as EMM386, 386MAX, and QEMM386. However, there are several
problems with the Virtual Control Program Interface (VCPI) used by
these products to provide access to extended memory in standard mode.
Under most circumstances, users of machines with 386 or higher
processors and with more than 2 megabytes (MB) of memory installed
should use enhanced mode rather than standard mode.

More Information:

Windows 3.1 can run in standard mode when an expanded memory manager
(EMM) is active. An EMM uses the paging mechanism of the 386 or higher
processor to map extended memory blocks, as EMS pages, into the first
megabyte of address space where no real memory is present. To do so,
the EMM puts the processor into protected mode, and keeps the emulated
upper memory block (UMB) and EMS page frames always available for
processes designed for real mode (such as MS-DOS), installed device
drivers, and terminate-and-stay-resident (TSR) programs. When one of
these processes is running, the processor is in virtual-8086 (v86)
mode, with paging on and the address mapping specified by the EMM.

In this configuration, the EMM services request to enter and leave
protected mode using the VCPI. The EMM may also allocate extended
memory. The standard mode MS-DOS Extender, DOSX, uses VCPI to switch
to protected mode and to v86 mode. Therefore, in standard mode, the
EMM remains active and continues to run "underneath" Windows. In
enhanced mode, the EMM is deactivated for the duration of the Windows
session.

Several questions have arisen regarding "VCPI support" under
standard-mode Windows. If no EMM is installed, more extended memory
and more total memory is available to Windows. An EMM uses a
considerable amount of extended memory to store itself and its tables.
The system incurs additional overhead because paging must be active at
all times. Unless an EMM is absolutely necessary, possibly because an
MS-DOS application will not run without EMS, Windows will probably run
better without an EMM. Windows enhanced mode runs on a machine with 2
MB of RAM memory installed if no EMM is present.

Windows standard mode does not support an MS-DOS application that is a
DPMI (MS-DOS Protected Mode Interface) client. However, if the EMM
also provides DPMI services, DOSX will not interfere with these
services.

The standard-mode task switcher attempts to arbitrate extended memory

use between Windows and MS-DOS applications. It performs this
arbitration by hooking the XMS function dispatcher. This does not work
properly if an EMM is installed, primarily because the extended memory
portion of the address space in standard mode is not accessible to the
MS-DOS portion of the switcher. For this reason, when an EMM is
present in standard mode, users will experience the following types of
problems:

 - Performance degradation when the system switches between tasks
 because the task switcher cannot use XMS memory for swap space.

 - Applications, such as AutoCad and Lotus 1-2-3, that include an
 MS-DOS extender will not run.
Because the standard-mode task switcher can't access Windows's
extended memory, it can't use extended memory for swap space when an
EMM is present. Users may experience some performance degradation
switching between MS-DOS applications in this configuration. Enhanced
mode is recommended to run many MS-DOS applications under Windows.

Windows standard mode does not specifically prevent VCPI applications
from running. However, because the task switcher cannot effectively
use extended memory provided by an EMM, an MS-DOS application that
uses extended memory probably will fail to run in the standard-mode
MS-DOS box. This applies equally to applications that use XMS, VCPI,
and DPMI. While it may be possible to run an MS-DOS application that
uses extended memory in an MS-DOS box under standard-mode Windows,
there is no general solution to the problems involved.

The VCPI specification is maintained by Phar Lap Software, Inc., and
Quarterdeck Office Systems. Windows 3.1 standard mode complies with
version 1.10 of the VCPI specification. Because many commercial EMM
products can be configured to not provide EMS, DOSX will attempt to
use VCPI if the following are true:

 - The INT 67h vector is not null
 - A device named "EMMXXXX0" is present
 - The VCPI detection call (INT 67h, AX=DE00h) succeeds

In particular, DOSX does not require the presence of a LIM 4.0
(Lotus/Intel/Microsoft expanded memory specification) driver or a LIM
3.2 page frame.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrMmDosdpmi

INF: Windows Enhanced Mode Allocation Limit 16 MB Minus 64K
Article ID: Q67999
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

In the "Microsoft Windows Software Development Kit Guide to
Programming," page 16-13 incorrectly states:

 The largest object that can be allocated in 386 enhanced mode is
 64 megabytes.

This is an error in the documentation. The actual limit for a single
object is 16,711,680 bytes [16 megabytes (MB) minus 64 kilobytes (K)].

More Information:

Huge memory blocks are limited to (16 MB - 64K) in 386 enhanced mode
because of the way global arena headers are implemented.

GlobalAlloc() may incorrectly return a non-NULL handle when allocating
objects larger than (16 MB - 64K). However, any attempt to access
portions of the object beyond the limit will result in a general
protection violation (reported in Windows as an Unrecoverable
Application Error).

Note that GlobalSize() will return the true size of the memory
allocated to the handle. For example, an application might request an
allocation of 20 MB, but GlobalSize() will report how much memory was
actually allocated, a figure less than or equal to (16 MB - 64K).

Additional reference words: 3.0 3.0a
KBCategory:
KBSubcategory: KrMmGlobalmem

INF: XMS Calls Under Windows 3.1
Article ID: Q83008
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

When enhanced mode Windows is running, the WIN386 module answers all
extended memory specification (XMS) calls. The standard mode MS-DOS
Extender (DOSX) answers all calls only in protected mode.

The standard mode task swapper answers memory allocation calls to
arbitrate the use of extended memory between Windows and MS-DOS
applications, and to facilitate task swapping.

More Information:

Windows enhanced mode provides its own XMS services, without regard to
the XMS driver that was installed before Windows started up. The
amount of XMS memory available in an MS-DOS window under enhanced mode
is determined by the PIF (program information file) settings, and not
by the amount of memory actually available in the system. The enhanced
mode XMS driver returns failure for all XMS Lock Region calls, because
enhanced mode XMS uses virtual memory rather than physical memory.

In standard mode, the task swapper hooks the XMS driver, allowing it
to arbitrate XMS use between Windows and MS-DOS applications. Most XMS
calls are passed through to the original XMS driver. However, calls
that manage extended memory are affected by the PIF settings. Because
it hooks the XMS driver, the standard mode task swapper can use
extended memory allocated to Windows, but not currently in use, for
swapping. This feature is disabled if a "limulator"
[Lotus/Intel/Microsoft (LIM) standard expanded memory system driver]
is present.

The standard mode MS-DOS extender hooks XMS detection in protected
mode. The INT 2Fh call that retrieves the address of the XMS driver's
control function (AX=4310h) returns a protected mode address that an
application can call to perform XMS control functions. This is
intended for the use by application installation programs that must
determine the version number of an installed XMS driver. Applications
in the Windows environment are discouraged from making other XMS calls
in protected mode. In particular, attempting to lock XMS memory in
standard mode may result in a page fault or fatal system crash.

Additional reference words: 3.10 switcher
KBCategory:
KBSubcategory: KrMmMisc

BUG: GlobalPageLock Moves Memory Fixed by GlobalFix
Article ID: Q85329

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
--

SYMPTOMS
========

When an application calls the GlobalPageLock() function specifying the
handle to a block of memory that has been fixed in place by the
GlobalFix() function, the address of the memory block can change.

STATUS
======

Microsoft has confirmed this to be a problem in Windows version 3.1.
We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

The following steps demonstrate this problem:

1. Allocate a block of movable memory using the GlobalAlloc() function.

2. Fix the address of the memory block using the GlobalFix() function.

3. Increment the memory block's page-lock count using the
 GlobalPageLock() function.

The address of the memory block should not change between step 2 and
step 3 above.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrMmFixlockwire

INF: Segment and Handle Limits and Protected Mode Windows
Article ID: Q68644
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

Page 16-25 of the "Microsoft Windows Software Development Kit Guide to
Programming" states:

 Under the Windows standard mode and 386 enhanced mode memory
 configurations, there is a system-wide limit of 8192 global memory
 handles, only some of which are available to any given application.

With regard to standard mode, this statement is incorrect. The limit
is 4096 global memory handles when Microsoft Windows runs in standard
mode and 8192 when Windows runs in enhanced mode. Standard mode uses
two LDT entries for each memory handle while enhanced mode uses one LDT
entry for each memory handle.

More Information:

Each memory block has an associated handle that Windows and
applications running in the Windows environment use to access the
block. The Intel 80286 or higher microprocessor maintains records of
each segment using a descriptor, which describes the attributes of
each memory block such as its base address, size, attributes (read,
write, execute), and privilege level. In enhanced mode, each memory
block has one handle and at least one descriptor. In standard mode,
each memory block has at least two descriptors. Because Windows and
its applications run in 16-bit protected mode, global memory blocks
larger than 64K (the maximum segment size in 16-bit protected mode)
use several descriptors.

The architecture of the Intel CPUs requires that each descriptor table
fit into its own 64K segment. Because each descriptor is 8 bytes long,
each descriptor table can hold a maximum of 8192 descriptors (64K / 8
bytes = 8K). Therefore, each descriptor table can manage up to 8192
segments. For more information, see the "386 DX Microprocessor
Programmer's Reference Manual," (Intel Corporation).

Windows creates a global descriptor table (GDT) for the system, and
one local descriptor table (LDT) for itself and all applications
running under Windows. Because all applications use the same LDT, a
maximum of 8192 descriptors are available to Windows and applications.
Enhanced mode can manage a maximum of 8192 segments because each segment
requires one descriptor. Standard mode can manage a maximum of 4096
segments because each segment requires two descriptors. Because
descriptors are used for code, data, and resource segments, the maximum
number of descriptors available for applications to use for global
memory blocks is considerably less than 8192 and 4096.

Windows does not provide way to determine how many selectors are
available for a given application to use. All Windows API functions fail
when there is not enough free memory to satisfy a given request, or when
there are not enough descriptors available. Either way, Windows is
unable to satisfy the application's memory request. It is important that
selectors be used with deliberation because each Windows application
must cooperate with other Windows applications. Instead of allocating
many small blocks from the global heap, an application should allocate
fewer blocks that are larger in size. The application can then divide
each larger memory block into pieces for its own use.

If small memory blocks are required by the application, use the local
memory-management routines provided by Windows. A local handle does
not impact the selector limit at all because a local memory block is
allocated inside a global memory block. For example, the LocalAlloc
function allocates a memory block from an application's or a dynamic-
link library's (DLL's) local heap.

In some circumstances, it may be advantageous to employ a more
sophisticated memory-management scheme called multiple FAR heaps. This
technique is useful if the application requires a number of blocks of
memory, say 100, and the total number of bytes in each block is not
above 64K. Chapter 18 (pages 707-724) of "Windows 3.0 Power
Programming Techniques," by Paul Yao and Peter Norton (Bantam Computer
Books), contains more details on this technique. In this chapter,
Norton and Yao state the steps necessary to perform local heap
allocation in a dynamically allocated segment. This chapter
effectively describes the technique of using multiple FAR heaps and
also provides some sample code.

This technique involves four steps:

1. Globally allocate a block of memory with GlobalAlloc.

2. Lock the block of memory with GlobalLock.

3. Initialize the block of memory by calling LocalInit.

4. Modify the local memory-management routines so each updates the DS
 register to point to the new heap just before a call to a local
 memory-management routine. When access to the new heap is complete,
 immediately restore the DS register.

Overall, this technique uses fewer global handles and less memory
overhead with each call.

Additional reference words: 3.00 MICS3 R3.2
KBCategory:
KBSubcategory: KrMmGlobalmem

PRB: XMS Version Information in MS-DOS Window Incorrect
Article ID: Q83455
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

SYMPTOMS
 In an MS-DOS window under Windows, the version number of the
 extended memory system (XMS) driver is incorrect. Windows exhibits
 the same behavior for its expanded memory system (EMS) driver,
 MS-DOS Protected Mode Interface (DPMI), or any other system that
 enhanced mode Windows virtualizes.

CAUSE
 The application retrieves the version number of the XMS driver in
 enhanced mode Windows, not the version number of the "real" XMS
 driver (which was present before Windows startup).

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrMmDosdpmi

INF: Shorthand Notation for Memory Allocation Flags
Article ID: Q72459
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

Some flags have been defined in the WINDOWS.H file [distributed with
the Windows Software Development Kit (SDK)] that are designed to be
used instead of common flag combinations for memory allocations.
Included below is an explanation of these flags:

Global Memory Allocations

There are two flags defined for global memory allocation: GHND and
GPTR. Both are to be used for the wFlags parameter of the
GlobalAlloc function.

 Flag Definition
 ---- ----------

 GHND (GMEM_MOVEABLE | GMEM_ZEROINIT)
 GPTR (GMEM_FIXED | GMEM_ZEROINIT)

Local Memory Allocations

Similarly, there are two flags defined for local memory allocation:
LHND and LPTR. Both are to be used for the wFlags parameter of the
LocalAlloc function:

 Flag Definition
 ---- ----------

 LHND (LMEM_MOVEABLE | LMEM_ZEROINIT)
 LPTR (LMEM_FIXED | LMEM_ZEROINIT)

The LPTR flag returns a pointer that can be used immediately (no need
to call the LocalLock function); whereas with the GPTR flag, the
GlobalLock function still must be used on the handle that is
returned.

For more information on the GlobalAlloc and LocalAlloc functions,
refer to the "Microsoft Windows Software Development Kit Reference
Volume 1".

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrMmMemattribs

INF: Appropriate Uses of WINMEM32
Article ID: Q73679
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

WINMEM32 is a dynamic-link library (DLL) that supports 32-bit flat
memory under the Microsoft Windows graphical environment. WINMEM32
provides a flat model computing environment for applications ported
from another operating system to Windows. New applications should not
be designed using WINMEM32.

More Information:

WINMEM32 is designed for an application structured as follows:

 +------------------------+
 | Front End |
 | Performs all |
 | interaction with I/O |
 | devices, the user, and |
 | the operating system. |
 +------------------------+
 /\
 ||
 ||
 \/
 +-----------------------+
 | Computation Engine |
 +-----------------------+

The front end application that provides the user interface is a
standard application for the 16-bit Windows environment. WINMEM32
supports the 32-bit "computation engine" that has no user interface
and does not interact with any peripheral devices or the operating
system.

Windows is not designed to support 32-bit applications; WINMEM32 is a
temporary measure to support an independent software vendors (ISV)
with a substantial investment in 32-bit code developed for another
operating system. Even with WINMEM32, porting an application to
Windows involves many complex issues that an ISV must carefully
address for the application to work properly.

Future versions of Windows will address the 32-bit application issues
better than WINMEM32 does. Future versions of Windows will support
WINMEM32 applications even though WINMEM32 is not developed any
further.

Additional reference words: 3.00 3.10

KBCategory:
KBSubcategory: KrMmWinmem32

INF: What EMS Means to Developers
Article ID: Q30590
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

This article describes how using Windows expanded memory affects
application development.

Please note that when expanded memory is mentioned in this article, it
also means extended memory. Extended memory is used as expanded memory
by Windows.

More Information:

In Windows versions 2.x and 3.0, expanded memory can be used by the
Windows memory manager. In enhanced mode Windows 3.0, the memory
manager can emulate expanded memory by using extended memory. All
Windows applications are run in one virtual machine, but each DOS
application receives its own virtual machine in which to run.

In real mode Windows, expanded memory presents the following problems:

1. Applications cannot share memory through global handles

2. The efficient use of available EMS (expanded memory specification)
 in a small frame

The only way applications can share global data is through the dynamic
data exchange (DDE) protocol or through the clipboard. When large
frame EMS is used, global objects are allocated above the EMS line and
are available only to one application. For example, in large frame
EMS, task A allocates some global memory and passes the handle to task
B. When task B attempts to access the memory object, it will not be in
memory. Instead, task B will access the corresponding location in its
own EMS memory.

DDE and clipboard objects can be shared because the Windows memory
manager will copy the contents of these objects to the currently
running application's EMS bank. The application must check the return
value from GlobalLock() because the memory manager may not be able to
successfully copy the object in a low memory situation. Clipboard
objects should be copied by the receiving application before the
clipboard is closed because the memory manager may delete the global
object.

Applications can share data through dynamic-link libraries (DLLs), as
well as through DDE and clipboard objects; however, only data located
in the DLL data segment can be shared. Global objects allocated by
DLLs are allocated above the EMS line, just like objects allocated by
an application.

There is one exception to the rule of not sharing global memory
handles. If the GMEM_NOT_BANKED flag is used, the object will be
allocated below the EMS bank line, making it available to all
applications. This should not be done because there is only a limited
amount of memory below the EMS line when the system is using large
frame EMS. This flag is available for device drivers that require this
kind of shared memory; applications should be designed using one of
the other methods to share memory objects.

The second issue regards the most effective use of small frame EMS by
applications. In small frame EMS, code and resources are the only EMS
items available to applications. Once code and resources are loaded
into EMS, they will not be discarded. However, they are banked out
when another task is running.

The Windows loader fills EMS before it loads code or resources into
conventional memory. For this reason, the DEF file for each
application should list the segments that are important throughout the
life of an application at the top of the list of segments in the
SEGMENTS statement, and these segments should be marked as PRELOAD.
List the segment that contains the application's main window procedure
first. The segments for code that is used and discarded, such as
initialization code, should be listed toward the bottom of the list.
By the same reasoning, mark resources that are important throughout
the life of the application as PRELOAD.

For small applications, the LimitEmsPages() function allows an
application to limit the amount of EMS that is allocated on its
behalf. The argument passed to this function is the maximum number of
kilobytes of EMS that Windows will allocate for the application. A
small application can call this function to keep 400-500K of EMS from
being allocated when the application can run reliably with 100K of
EMS.

When LimitEmsPages() is used, it is important to note that in large
frame EMS (where DLL code is located above the EMS line), a small
application will require more space than the sum of its segments
because library code shares the EMS allocated for the application.

Note: Hook callback functions must be placed in FIXED DLL code so the
code will always be present regardless of EMS state. The same is true
for GlobalNotify() callback functions.

Additional reference words: 2.03 2.10 3.00
KBCategory:
KBSubcategory: KrMmMisc

FIX: GlobalReAlloc() Shrinks >1 MB Block to <1 MB UAE
Article ID: Q70819
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9103002

SYMPTOMS
 When the GlobalReAlloc function is used to change the size of a
 memory block larger than 1 MB to smaller than 1 MB, an
 unrecoverable application error (UAE) occurs either immediately or
 when the handle is freed by the GlobalFree function.

CAUSE
 In this situation, the GlobalReAlloc function corrupts pointers in
 the huge memory object.

RESOLUTION
 Microsoft has confirmed this to be a problem in Microsoft Windows
 version 3.0. To avoid this problem, use the GlobalAlloc function to
 allocate a new block of memory. If required, copy a portion of the
 contents of the original block to the new block. Free the original
 block with the GlobalFree function.

 This problem was corrected in Windows version 3.1.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMmGlobalmem

INF: Corrected WINMEM32.DLL Available in Software Library
Article ID: Q71752

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

An update to the WINMEM32.DLL file included with the Windows Software
Development Kit (SDK) version 3.0 has been placed in the
Software/Data Library. This update corrects a problem related to
freeing memory allocated by the Global32Alloc function. With the
original version of this file, the Global32Free function can fail to
free an allocated object.

Applications developed to use WINMEM32.DLL should include this updated
version of the library. Because WINMEM32.DLL is not included with the
retail Windows product, this does not place any additional
requirements on the software developer.

The updated WINMEM32.DLL has been compressed and stored in the
Software/Data Library in a file named WINMEM32. WINMEM32 can be found
in the Software/Data Library by searching on the keyword WINMEM32, the
Q number of this article, or S13019. WINMEM32 was archived using the
PKware file-compression utility.

The version of the WINMEM32.DLL file shipped with the Windows SDK
version 3.1 corrects this problem with the Global32Free function.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMmWinmem32

INF: Maximizing the Use of Available Memory in Windows
Article ID: Q72236
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The Microsoft Windows graphical environment creates and stores objects
on behalf of each application in the system. Two places store many of
these objects, the user heap and the graphics device interface (GDI)
heap, each one limited to 64K. This article discusses the objects,
their size, and how to maximize the use of the heaps.

More Information:

A good way to see what is stored in the heaps is to use the Heap
Walker tool (HEAPWALK.EXE) provided with the Microsoft Windows
Software Development Kit (SDK). Heap Walker is documented in Chapter
11 of the SDK Tools manual for Windows 3.0 and in Chapter 9 of the SDK
Programming Tools manual for Windows 3.1. The memory management
practices of Windows are documented in Chapters 15 and 16 of the SDK
Guide to Programming for Windows 3.0. Further information on Windows
memory management is available in Charles Petzold's "Programming
Windows" (Microsoft Press) and in Peter Norton and Paul Yao's "Windows
3.0 Power Programming Techniques" (Bantam Computer Books).

The following table lists the objects stored in the user heap and the
typical sizes for these items:

 Object Size in Bytes
 ------ -------------
 Menu 20 + 20 per menu item
 Window Class 40 to 50
 Window 60 to 70

Note that every running program requires space in the user heap. Every
application must use this shared resource wisely. One technique to
reduce heap requirements is through the judicious use of resources.
For example, static strings should be placed into a string table
instead of being stored as string variables. If a group of
applications shares a common set of resources, place the resources
into a dynamic-link library (DLL). Multiple applications can share one
copy of code, data, and resources through a DLL.

Another way to reduce heap requirements is through the use of class
extra bytes and window extra bytes. Although these bytes are stored on
the user heap, each is associated with a particular window or window
class. These bytes are convenient places to store a handle to a data
structure that has been allocated from global memory.

Menus are, by far, the biggest consumer of user heap space.
Applications that have multiple menu bars or create menus with the

TrackPopupMenu function should load these resources only as needed and
destroy them after use, instead of waiting for program termination. In
Windows 3.1, user stores menus in a separate 64K heap.

When an application creates a GDI object, Windows allocates space from
the GDI heap. While most applications create GDI objects, an
application should not create too many objects at one time. Also, each
object must be destroyed when it is no longer required by the
application. The following table lists the objects stored in the GDI
heap and their typical sizes:

 Object Size in Bytes
 ------ -------------
 Brush 32
 Bitmap 28 to 32
 Device Context (DC) 300
 Font 40 to 44
 Pen 28
 Region 28
 Palette 28

Items are created in the GDI heap whenever an application creates a
GDI object. Most applications create GDI objects, but an application
should not create too many objects at one time. Also, an object must
be destroyed when it is no longer required by the application.

The maximum number of windows that can be open simultaneously is
constrained by the amount of space remaining in the user heap. As
noted above, the user and GDI heaps are each limited to 64K.

Because heap space is shared among all running applications, an
application must check the value returned from each function call to
verify that memory allocations are successful. The debugging version
of Windows produces a FatalExit message when an application uses an
invalid handle. This information is difficult to obtain from any other
source.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMmGlobalmem

INF: Checksums for Windows Executable Image Files
Article ID: Q72471
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

When the debugging version of Windows is running in real mode, it
calculates the checksum of each code segment that is loaded or
unloaded. This calculation is performed to ensure that a code segment
is not modified by a "wild write" (storing data through an invalid
pointer).

An application can cause the debugging version of Windows to calculate
checksums on all segments present in the system by calling the
ValidateCodeSegments function.

ValidateCodeSegments can be overridden by adding an
EnableSegmentChecksum=0 line to the [kernel] segment of the WIN.INI
file. However, when Windows 3.0 is running in real mode with EMS
(expanded memory specification) memory, the kernel does not calculate
checksums.

Segment validation is performed only in real mode because applications
are prevented from writing into code segments in protected mode. Any
attempt to write into a code segment in protected mode causes an
unrecoverable application error (GP-fault), which provides immediate
notification of the programming error.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMmMisc

FIX: Microsoft Windows Page Locks GMEM_FIXED Memory
Article ID: Q72584
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

SYMPTOMS
 When an application running under Microsoft Windows version 3.0
 allocates a block of memory with the GMEM_FIXED attribute
 specified, Windows returns the handle to a block of page-locked
 memory. Depending on the amount of available memory, the system may
 hang or slow down because of disk thrashing.

CAUSE
 The Windows kernel page locks all fixed memory allocated in Windows
 version 3.0. When a memory block is page locked, Windows cannot
 page to disk the physical memory associated with the segment.

 This behavior is incorrect for applications; however, it is correct
 for dynamic-link libraries (DLLs). If a DLL allocates GMEM_FIXED
 memory, Windows provides page-locked memory because Windows assumes
 that the DLL might access the memory at interrupt time.

STATUS
 Microsoft has confirmed this to be a problem in Windows version
 3.0. This problem was corrected in Windows version 3.1.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMmMemattribs

PRWIN9106004: Memory Allocation in Enhanced Mode Hang or UAE
Article ID: Q73336
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9106004

SYMPTOMS
 Under certain circumstances, when an application calls the
 GlobalAlloc or GlobalReAlloc function, enhanced mode Windows 3.0
 hangs or produces an unrecoverable application error (UAE).

CAUSE
 The enhanced mode of Windows version 3.0 improperly handles heap
 partition marker arenas. Encountering one should signal the end of
 a given free-space search.

STATUS
 Microsoft has confirmed this to be a problem in Windows version
 3.0. This problem was corrected in Windows version 3.00a.

Additional reference words: 3.00 3.00a
KBCategory:
KBSubcategory: KrMmGlobalmem

INF: Information About Headings and Labels in HEAPWALK
Article ID: Q74301
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

The Heap Walker utility (HEAPWALK) is a tool used to view the memory
layout in the Microsoft Windows graphical environment. With HEAPWALK,
you can examine memory before, during, and after an application runs
and examine how an application behaves under different memory
conditions. This article lists and explains the columns of information
that HEAPWALK displays for global and local memory objects.

The version of HEAPWALK provided with version 3.1 of the Microsoft
Windows Software Development Kit (SDK) differs significantly from the
version provided with version 3.0. HEAPWALK version 3.1 uses the Tool
Helper dynamic-link library (DLL), displays information in a more
organized manner (by sorting objects based on a secondary key),
provides information about objects in the user heap as well as in the
GDI help, and simultaneously displays a graphical representation of a
resource along with a hex dump of the resource.

The information in this article applies to HEAPWALK versions 3.0 and
3.1 unless otherwise noted.

More Information:

Main Window

HEAPWALK displays a list of memory objects in the global heap in its
main window. Options on the Walk menu determine which objects HEAPWALK
displays in its main window. Options on the Sort menu determine the
order in which objects are displayed in the main window. Options on
the Object menu specify a number of actions that HEAPWALK can perform
on a selected object.

For each global memory object, HEAPWALK displays various information
in its main window, as follows:

ADDRESS:
 Address of the memory block (in hexadecimal).
 - In real mode or standard mode, this is a physical address value.
 - In enhanced mode, this is a linear address value. (The paging
 mechanism maps a linear address to a physical address.)

HANDLE:
 Handle for the memory block (in hexadecimal).
 - This value was returned from a GlobalAlloc call.

SIZE:
 Size of the memory block in bytes (in decimal).

LOCK:
 Current lock count of the memory block (displayed only if nonzero).

FLG:
 Flag.
 D - If memory block is discardable.
 Page 11-3 of the "Microsoft Windows Software Development Kit
 Tools" manual for version 3.0 incorrectly states that this
 field contains an "S" for shareable segments. Instead, the
 OBJ-TYPE field contains "Shared" for shareable segments.

OWNER-NAME:
 Owner of the memory block.
 - Usually the module that allocated the memory block.
 - Can be an application name (for example, HEAPWALK), one of the
 Windows modules (USER, GDI, DISPLAY, and so on), or FREE.

OBJ-TYPE:
 Type of memory object:
 - Code segment number or name - Code segment along with its number
 or name. (To display segment names, place the SYM file for the
 application module in the directory from which HEAPWALK runs,
 and select the Label Segments command from the Sort menu.)
 - Data - Data segment.
 - Shared - A shared object.
 - Resource
 - Kernel data structures such as:
 - Task
 - Task Database
 - Module Database

ADD-INFO:
 Additional information that may accompany OBJ-TYPE.
 - This is usually a resource type such as an icon, a cursor, or a
 font.

Local Window

To view the memory objects in an application's local heap, select the
application's data segment and use the Show and LocalWalk commands
from the Object menu. This results in two windows: a Show Window,
which displays a hexadecimal memory dump, and a Local Window, which
displays a list of the local objects and their attributes, as follows:

OFFSET:
 Offset of the local memory block in the data segment (in
 hexadecimal).

SIZE:
 Size of the local object in bytes (in decimal).

MOV/FIX:
 Mov - For a movable memory block.

 Fix - For a fixed memory block.

FLAGS:
 For movable objects.
 D - If discardable.
 Lnn - Lock count if nonzero.

OBJECT TYPE:
 "Free" for free objects.
 For the GDI data segment, the local window displays the object type
 (for example, DC, Brush, Pen, or Region).

Show Window

Using the Show command from the Object menu displays a hexadecimal
dump of any global memory block in a separate window. The show window
displays the offset, hexadecimal memory dump, and the ASCII memory
dump. The Showbits command displays the memory as a bitmap (if the
block contains a cursor, an icon, or a bitmap).

HEAPWALK version 3.0 truncates objects that are larger than 64K.
HEAPWALK version 3.1 does not exhibit this behavior.

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrMmMemattribs

INF: Future Direction of WINMEM32
Article ID: Q74478
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

WINMEM32 is a dynamic-link library (DLL) that allows applications
running in enhanced mode Windows version 3.00 to support the 32-bit
flat memory model.

As additional versions of the product are released, it is planned
that:

 - The limit on the maximum object size will be increased from
 16,711,680 bytes (16 megabytes minus 64 kilobytes).

 - Selectors for WINMEM32 memory objects will not be tiled by default.
 Instead, selectors will be tiled using the Global16PointerAlloc()
 function. This change will make WINMEM32 less "selector intensive."

In the future, a 32-bit version of Windows will be released. At that
time, all development of WINMEM32 will cease because its functionality
(supporting 32-bit applications on 16-bit Windows) will be
unnecessary. WINMEM32 applications will be supported on this future
system.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMmWinmem32

INF: Using Memory Below 1 Megabyte
Article ID: Q74696
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

Memory allocated with a base address below 1 megabyte (low memory) is
useful for communicating between applications developed for the
Microsoft Windows graphical environment and MS-DOS terminate-and-stay-
resident (TSR) programs and device drivers.

The only way a Windows application can directly allocate memory
guaranteed to be below 1 MB is to use the GlobalDosAlloc function.
However, this memory is a limited resource and should be used with
care.

More Information:

The following clients use memory below 1 MB:

 - MS-DOS
 - MS-DOS device drivers
 - TSRs
 - Parts of the Windows kernel
 - Windows enhanced mode virtual drivers (VxDs)
 - Windows applications that call GlobalDosAlloc
 - Windows applications that call GlobalAlloc and receive low memory
 by chance
 - The task database for each active Windows application (This small
 block of low memory holds data used by MS-DOS.)

The first four clients on the list allocate their memory before any
Windows applications are run, therefore an application cannot prevent
this consumption of the low memory resource. (The user can modify the
CONFIG.SYS and AUTOEXEC.BAT files to reduce the number of devices and
TSRs.)

Virtual devices can allocate (or map) memory below 1 MB to communicate
with various hardware devices and MS-DOS device drivers. VxDs such as
the virtual NetBIOS driver and various virtual display drivers map
memory below the 1 MB line, reducing the amount of low memory
available to Windows.

The last three clients of low memory listed can progressively consume
more of the resource as the system runs, therefore an application can
increase the chance that its low memory allocations will succeed by
performing them as early as possible during system initialization. Two
methods for doing this are:

1. Load the application or dynamic-link library (DLL) from the "run="
 or "load=" line in the WIN.INI file or from the StartUp group

 provided by Windows 3.1, or

2. Create a Windows device driver that performs the allocation when it
 is first loaded.

Beware of using too much low memory because other applications that
need low memory may begin to fail. The worst outcome of allocating too
much low memory is that Windows will be unable to allocate the task
database required to start an additional application.

In Windows enhanced mode, the lower memory that Windows applications
allocate is local to the system virtual machine (VM). Other virtual
machines (or MS-DOS compatibility boxes) cannot see the memory that
the GlobalDosAlloc function allocates. Allocating "global" low memory
(seen by all virtual machines) requires a virtual device, or the
memory must be allocated before Windows is loaded.

Additional reference words: 3.00 3.10 meg
KBCategory:
KBSubcategory: KrMmDosdpmi

Sample: Global Heap Functions
Article ID: Q97940

Summary:

SHOWMEM is a sample application that allows the user to allocate,
free, and manipulate memory from the global heap. Different "what if"
scenarios can be demonstrated without writing and rewriting code.
Information about global heap objects is displayed using the
GlobalEntryHandle and ModuleFindHandle TOOLHELP.DLL functions.
Additional information about how to use the global heap functions is
provided, as well as a collection of related Microsoft Knowledge Base
articles in help-file format.

SHOWMEM can be found in the Software/Data Library by searching on the
the word SHOWMEM, the Q number of this article, or S14158. SHOWMEM was
archived using the PKware file-compression utility.

Additional reference words: 3.10 tool help helper toolhelper
KBCategory:
KBSubcategory: KrMMGlobalMem

INF: DPMI Specification Available from Intel
Article ID: Q62065
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The MS-DOS protected mode interface (DPMI) specification is available
free of charge by calling Intel Corporation at (800) 548-4725.
International customers can obtain the DPMI Specification by
contacting the Intel sales office that serves their country.

More Information:

The DPMI specification was defined to allow an MS-DOS program to
access the extended memory provided by a PC architecture computer
while maintaining system protection. DPMI defines a specific subset of
MS-DOS and BIOS calls that can be made by protected mode MS-DOS
programs. It also defines a new interface through software Interrupt
31h, which protected mode programs can use to allocate memory, modify
selectors, call real mode software, and so forth.

DPMI is commonly used to communicate with a terminate-and-stay-
resident (TSR) program or an MS-DOS device driver from a protected
mode application. If the protected mode application passes a buffer of
data to a TSR or device driver, the application must allocate the
buffer from memory addressed below 1 megabyte to make the data
accessible to the real mode software. The application must also
translate the buffer's address from a selector address to a segment
address. If the real mode software calls back to a function in the
protected mode application, the application must allocate a real mode
callback address. DPMI provides services to perform each of these
tasks.

The Microsoft Windows standard mode MS-DOS extender and Windows
enhanced mode provide translation services for most of the commonly
used interrupts. This allows a driver or an application to call
MS-DOS, the BIOS, and other common services without using the DPMI.
However, when an application communicates with a network, a TSR, or
any real mode software for which Windows does not provide automatic
translation, it must use DPMI services.

DPMI services should be used only in a Windows device driver or a
dynamic-link library (DLL). An application should manipulate selectors
using the kernel selector functions, documented in the Microsoft
Windows Software Development Kit (SDK). Calling DPMI services from an
application may not be supported by future versions of Windows.
However, calling these services from a device driver or a DLL will be
supported.

Additional reference words: 3.00 vcpi
KBCategory:

KBSubcategory: KrMmDosdpmi

INF: Using GlobalNotify to Implement Real Mode Virtual Memory
Article ID: Q74796
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

In the Microsoft Windows graphical environment, the GlobalNotify
function works with memory allocated using the GMEM_NOTIFY and
GMEM_DISCARDABLE flags as follows:

1. The memory is allocated.

2. Windows runs low on memory, so it discards the least-recently used
 (LRU) block of discardable memory.

3. If the block to be discarded was allocated with the GMEM_NOTIFY
 flag set, Windows calls the appropriate notification procedure.

4. The notification procedure gives permission to discard the memory.

This article discusses these four steps and some related issues.

More Information:

The notification procedure must be in a fixed code dynamic-link
library (DLL). This ensures that the memory containing the
notification procedure will not be discarded. Although the application
allocated the memory, the application (except for the notification
procedure) is not in memory because memory is low.

The application has two methods available to instruct the notification
procedure regarding a particular block of memory:

1. Store disposition instructions at the beginning of the block of
 memory. For example, if the notification should save 1000 bytes of
 the block in the TEMP.VM file when the block is discarded, reserve
 a fixed number of bytes at the beginning of the memory block for a
 header. The header could contain the name of the file (TEMP.VM) and
 the number of bytes to store.

2. Assign the job of allocating the memory to the DLL. Then, when the
 notification routine is called, the DLL has the data on where to
 save the contents of the memory block. This can be accomplished by
 implementing the MyGlobalAlloc and MyGlobalLock functions in the
 DLL.

 MyGlobalAlloc allocates an appropriately sized block of discardable
 memory with the notify bit set, and stores the handle returned into
 a handle table (stored in the DLL's data segment). MyGlobalLock
 locks the appropriate block of memory and returns a pointer to the
 memory to the calling application.

The following issues must be addressed in the notification routine:

1. Open the file, save the data, and close the file upon receiving the
 notification. Applications should not leave file handles open
 between messages. Using a file handle that is already open can
 cause disastrous results because the current program segment prefix
 (PSP) may not belong to the application, and the application might
 use the wrong file handle.

2. Do not call any functions that might move memory, such as
 GlobalAlloc, GlobalReAlloc, or LocalAlloc, in the notification
 function. If the notification procedure calls the SendMessage
 function, be sure it does not start a chain reaction that could
 move memory. Using PostMessage is a safer alternative.

3. The GlobalLock function fails if the memory has been discarded;
 therefore, the DLL should have a MyGlobalLock function that follows
 this algorithm:

 if (GMEM_DISCARDED & GlobalFlags(hMem))
 {
 hMem = GlobalReAlloc(hMem, lSize,
 GMEM_DISCARDABLE | GMEM_NOTIFY | GMEM_MOVEABLE);

 // Reload the data here.
 }

 lpMem = GlobalLock(hMem);

 A typical notification routine in the DLL might resemble the
 following:

 BOOL FAR PASCAL NotifyProc(HANDLE hMemToDiscard)
 {
 BOOL bValid;

 bValid = CheckForKnownMemory(hMemToDiscard);

 return bValid;
 }

 The CheckForKnownMemory function compares the handle specified with
 the function's list of known handles. If the function recognizes
 the handle, the function saves the contents of the memory block to
 disk and returns TRUE; otherwise, the function returns FALSE.

 This function is initialized by adding the following line to the
 application's WinMain function:

 GlobalNotify(NotifyProc);

 Calling the MakeProcInstance function to create a procedure
 instance address is not necessary because the function is in a DLL.
 The NotifyProc function must be in a fixed code DLL and must be
 exported. The CheckForKnownMemory function should be in the same

 code segment as NotifyProc for minimal movement of memory.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMmGlobalnotify

INF: Solving the
Article ID: Q105274
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
--

SUMMARY
=======

Each task under Windows requires a data structure allocated below 1
megabyte (MB) called the Task Data Base (TDB). Under the debug version
of Windows, failure of a TDB's allocation shows up as:

 t Kernel: GlobalAlloc(200) failed for ????

This error occurs within the context of LoadModule as it attempts to
start a new task under a low conventional memory condition.

The most common cause of low conventional memory is fixed allocations
made on behalf of a dynamic-link library (DLL). Fixed allocations
should be used only for code and data touched at interrupt time. All
other allocations should be made with the moveable attribute.

MORE INFORMATION
================

The Windows heap consists of all conventional and XMS memory available
after WIN.COM and WIN386.EXE/DOSX.EXE are loaded by MS-DOS. These two
physically separate blocks are combined into a single linear address
space to make up the global heap.

Windows allocates fixed objects with a bottom up/first fit algorithm.
As more fixed objects are allocated from the heap, conventional memory
gets pinched. Eventually, even a small allocation for the TDB fails
resulting in LoadModule returning 0 (zero).

The HEAPWALK.EXE utility provides a view onto the global heap to
determine what is using up conventional memory. The Sort Address menu
item sorts the main heap with lower addresses at the top of the list.
Any object with an address of 9FFFF or below is in conventional
memory. An object with an "F" set in the FLG column is fixed. Any
fixed object owned by an application or its dependent dynamic-link
libraries that is not a TDB (TYPE Task in HEAPWALK) should be
considered suspect.

The module definition (.DEF) file should mark CODE MOVEABLE
DISCARDABLE and DATA MOVEABLE. Any allocations should contain the
GMEM_MOVEABLE attribute. The EXEHDR.EXE utility can be used to
indentify modules that use the fixed attribute for their code or data
segments. Segments without the <moveable> attribute in the "flags"
column of EXEHDR's output are fixed.

Additional reference words: 3.10 dll tdb memory low conventional fixed
KBCategory:
KBSubcategory: KrMmInsuffmem

INF: Determining Free Memory in Windows Enhanced Mode
Article ID: Q74941
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

When an application requires memory for a particular purpose, it
should request that amount of memory from the system. If a given
request fails, the application can present an error message to the
user, or make a smaller request.

In the MS-DOS (non-Windows) environment, it is customary for an
application to request that the operating system determine how much
memory is free and report that information. The application can then
allocate that amount of memory and scale its capacity limits
accordingly. This is acceptable in an environment where only one
application is running at any given time, which has complete access to
all system resources available.

However, in the Windows cooperative multitasking environment,
applications must share system resources with other applications
running simultaneously.

More Information:

In enhanced-mode Windows, determining the amount of free system memory
is a very complex problem because Windows uses virtual memory. There
are also a number of different types of memory that are used for
specific purposes. The following list enumerates some of these memory
options:

 DDE share
 Discardable
 Fixed
 Movable
 Page locked
 Pageable
 Provided by GlobalDOSAlloc

The presence of any of these attributes will affect the amount of free
memory.

It has been suggested that to attempt an allocation and then properly
handle failure by potentially trying another allocation is too slow.
However, it is doubtful that any method of calculating available
memory will be any faster (if such a calculation was even possible).
An overriding complication is that any memory use in another
application or in a virtual machine will invalidate any computed
value.

An excellent discussion about dealing with varying amounts of system
memory is in Chapter 18 of "Peter Norton's Windows 3 Power Programming
Techniques" (Bantam Books, 1990) beginning on page 661. Given the
caveats above, it is possible to obtain a very rough estimate of free
system memory. Two functions report this information: the
GlobalCompact function and the MS-DOS Protected Mode Interface
(DPMI) function 0500h (get free memory information).

There are two pools of memory in enhanced-mode Windows:

1. The DPMI memory pool managed by the WIN386 paging memory manager.
 Use DPMI function 0500h to determine the size of this pool.

2. The global heap memory pool(s) managed by KRNL386.EXE (the Windows
 enhanced-mode Kernel. Use the GlobalCompact(-1) function to
 determine the size of this pool.

A rough estimate of available memory can be computed by placing the
following code fragment into an application:

 FreeMemEst = max(GlobalCompact(-1),
 (DPMI_Call_AX_0500h->MaxUnlockedPageAlloc - 1L) * 4096L);
 FreeMemEst = min(FreeMemEst, (16L * 1024L * 1024L) - (64L * 1024L));

The first line of code determines available memory according to both
memory managers. The second line accounts for the limitation imposed
by the GlobalAlloc function, which sets the maximum size of a
segment at (16 megabytes minus 64 kilobytes). The GlobalCompact
function does require a lot of processing time, especially in standard
(286 protect) mode.

Additional reference words: 3.00 3.10 3.x
KBCategory:
KBSubcategory: KrMmMisc

INF: Demand Paging MS-DOS Applications
Article ID: Q47125

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

The following article has two parts. The first part applies to Windows
version 3.0, and to Windows version 3.1 without 32-bit disk access. The
second part applies to Windows version 3.1 with 32-bit disk access.

More Information:

Part 1: Windows 3.0, and Windows 3.1 Without 32-Bit Disk Access

Under enhanced mode Windows version 3.0, it is not possible to allow
MS-DOS applications to use virtual (demand paged) memory (VM) when
they are active (they are the foreground application, or have the
background execution option set). This is because the paging
mechanisms of the system use either:

 - MS-DOS plus an MS-DOS device plus INT13
 - Just INT13

In other words, to access the paging file (virtual memory that is
currently demand-paged out) Windows must call code that resides in
the VM along with the application (BIOS, MS-DOS, and so on).

The problem this causes is best illustrated by an example:

1. Run an MS-DOS application that hooks INT 13h.

2. Arrange to "page out" the page that has part of the application's
 INT 13h hook in it.

3. Touch a "not present" page.

 a. This generates a page fault.
 b. The system calls "page this page in."
 c. This calls INT 13h.
 d. This page faults because the INT 13h hook of the application is
 currently paged out.
 e. The system calls "page this page in."
 f. This calls INT 13h.
 g. This page faults because the INT 13h hook of the application is
 currently paged out.

This continues forever, causing a deadlock situation, and the system
halts.

To prevent this problem, make sure every page of an MS-DOS application
is always present when the MS-DOS application's VM is active. Thus,
MS-DOS application VMs are always present, and therefore, do not use
demand-paged memory except when they are not active.

Given the way that system paging works, there is no way to work around
this limitation, partly because the installed MS-DOS application base
is so diverse. Note also that this problem with INT 13 is only part of
the picture. Almost all hardware interrupts can cause exactly the same
problem.

Part 2: Windows version 3.1 with 32-Bit Disk Assess

One solution is to change the way system paging works so that to
access the paging file, the system paging does not have to use any
code that resides in the VM with the application. 32-bit disk access
for Windows version 3.1 performs this type of functionality.

32-bit disk access addresses the problem that prevents the demand
paging of MS-DOS application VMs. 32-bit disk access allows the paging
component of the system to access the paging file without having to
access anything that resides in the VM (the application, MS-DOS, the
BIOS, and so on). This prevents the paging deadlock problem discussed
above because all of the code and data needed to access the paging
file is inside enhanced mode Windows and is designed such that access
to the paging file will never cause a page fault to occur.

As a side benefit, this is also much faster than calling MS-DOS or
some other component in the VM because calling VM code requires that
the 80386 CPU change modes between protected mode and virtual mode.
The transitions between CPU modes are quite expensive in terms of CPU
cycles. Therefore, the other benefit of 32-bit disk access is that
there is an improvement in "paging throughput" because the "CPU mode
transitions" required by access to the paging file through MS-DOS or
INT 13h are eliminated.

Additional reference words: 3.00 3.10 3.x
KBCategory:
KBSubcategory: KrMmMisc

PRB: GlobalUnlock Can Cause Fatal Exit 0x02F0
Article ID: Q49838
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

SYMPTOMS
 Under the debugging version of Windows, when an application calls
 the GlobalUnlock function, a FatalExit 0x02F0 "GlobalUnlock: Object
 usage count underflow" error occurs.

CAUSE
 The application called the GlobalUnlock function more times that it
 called the GlobalLock function. Under the retail version of
 Windows, the function returns the normal value 0 in these
 circumstances.

RESOLUTION
 Match each GlobalLock call with a GlobalUnlock call.

Additional reference words: 2.03 2.10 3.00 3.10 2.x SR# G891012-113
fatal exit 2F0 02F0 2F0h
KBCategory:
KBSubcategory: KrMmFixlockwire

PRB: Reset A20 Bit Set During DPMI Simulate Interrupt Crash
Article ID: Q76582
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

SYMPTOMS
 A Windows application that specifies "reset interrupt controller
 and A20 line" when calling the MS-DOS protected mode interrupt
 (DPMI) function "Simulate Real Mode Interrupt" can cause Windows to
 crash.

RESOLUTION
 Applications that use the "Simulate Real Mode Interrupt" function
 must ensure that this bit is not set.

More Information:

The "Simulate Real Mode Interrupt" function is documented in the DPMI
specification.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMmDosdpmi

PRB: Protected-Mode GlobalCompact Return Is Not Free Memory
Article ID: Q76686
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

SYMPTOMS
 When Windows is running in one of its protected modes, the value
 returned by the GlobalCompact function does not accurately reflect
 the amount of free memory available in the system.

 In enhanced mode, Windows can swap memory objects to disk. This
 process takes a long time relative to accessing an object in
 memory. Therefore, the GlobalCompact function returns the amount of
 memory available without performing any paging.

 In standard mode, the GlobalCompact function never reports more
 than 1 megabyte (MB) of memory free because of a memory allocation
 limit on the 80286 chip.

STATUS
 Microsoft has confirmed that this problem occurs in Windows
 versions 3.0 and 3.1. We are researching this problem and will post
 new information here as it becomes available.

Additional reference words: 3.00 3.10 3.x
KBCategory:
KBSubcategory: KrMmGlobalmem

INF: Windows Applications Should Not Use EMS Memory
Article ID: Q76689
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

One of Windows's advances over MS-DOS is its ability to have code
loaded for more than one application simultaneously. Applications that
are loaded cooperate and share the processor and screen.

Under Windows versions 1.x and 2.x, getting Windows, DOS, and the
applications to fit into memory simultaneously was a feat of software
engineering. Windows made EMS memory [memory made available through
the use of expanded memory specification (EMS)] calls to manage
memory. If a particular application needed to manage a large memory
space, the application was also allowed to make EMS memory calls.

Windows 3.0 exploits the protected modes of the 286 and 386 chips to
provide much more memory for applications to use. Windows manages both
expanded and extended memory for applications that should no longer
need to manage EMS memory for themselves.

Microsoft strongly recommends that Windows applications do not make
EMS memory calls to manage expanded memory. Direct application EMS
memory management will be removed from future versions of Windows.
Non-Windows (DOS) applications that are run in the Windows environment
are not affected by this recommendation.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMmRealmode

INF: Memory Access Methods for Protected Mode Applications
Article ID: Q77226
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

Applications that will run solely in one of Windows protected modes
(standard mode or enhanced mode) can take advantage of the attributes
of protected mode to reduce the size and improve the speed of the
application.

These techniques do not apply to applications that can be run in
Windows real mode.

More Information:

To assure compatibility with future versions of Windows, an
application should not make any assumptions about the protection ring
of memory selectors the system provides for memory allocations.

Using global memory can be more straightforward when an application is
developed for the protected-mode environment. The following four steps
provide a procedure for using memory:

1. Use the GlobalAlloc() function to allocate memory. Applications
 should ALWAYS use the GMEM_MOVEABLE attribute, which signifies that
 the linear address of the memory block can be changed by the
 system. The selector or handle to this block will not change unless
 the application calls GlobalRealloc() to modify the handle, and
 changes the number of 64K blocks required to satisfy the request.
 For example, the selector can change if a 60K block is increased to
 70K or if a 70K block is reduced to 60K.

2. Use the GlobalLock() function to obtain the corresponding selector.
 In protected mode, there is no need to bracket each use of an
 object with GlobalLock/GlobalUnlock calls. These calls are required
 in real mode because the Windows memory management algorithm cannot
 move locked objects in memory. In protected mode, locked objects can
 be moved without changing the selector value that is used to refer
 to the object.

3. Use the selector and the range of offsets (from zero to the size of
 the block) to access the memory.

4. When the memory block is no longer required, unlock the memory
 block using the GlobalUnlock() function, and free the selector using
 the GlobalFree() function.

Some applications introduce incompatibilities by implementing a
private version of the GlobalLock() function to translate a handle to
a selector. While a private function can be made to work for any one

version of Windows, it is not guaranteed to work in future versions.

The four steps above may be used for discardable memory. However,
Windows cannot discard the memory while it is locked. Therefore, even
in protected mode, applications that use discardable memory objects
should unlock each object when it is not in use. This makes these
memory blocks candidates for discarding should the system run out of
memory.

Selectors should not be shared between applications unless the rules
outlined in the dynamic data exchange (DDE) specification are
followed. In particular, the GMEM_DDESHARE or GMEM_SHARE flag must be
specified in memory allocation requests. Future versions of Windows
may implement separate address spaces; any applications that
improperly share memory will not function properly in any such
release.

An application that uses any of these techniques should specify the
Resource Compiler -T switch when resources are added to the
application. This will prevent the application from running in real
mode.

Additional techniques to decrease the size and increase the speed of
an application developed for protected mode can be found by searching
on the words:

 prod(winsdk) and streamlined

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrMmGlobalmem

INF: Rules for Using Far Pointers to Memory Objects
Article ID: Q77473
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

In Windows version 3.0 standard and enhanced modes, rules for using
far pointers have been relaxed substantially. This is due to the use
of the protected mode of the 80286, 80386, and 80486 processors. In
this mode, far pointers are no longer a segment:offset value.
Protected mode far pointers are made up of a selector:offset value.
The selector is an index into a descriptor table. Each descriptor
contains information about a block of memory, such as size, location
in memory (linear memory if in enhanced mode, physical memory if in
standard mode), and access rights. For more information on the
descriptor table, refer to Chapter 3 of "The 80386/80486 Programming
Guide" by Ross P. Nelson (Microsoft Press).

The protected mode of the 80286, 80386, and 80486 processors allows
memory blocks to be moved in memory without invalidating their
selector:offset value. This is accomplished by changing the reference
to the location in memory in the descriptor rather than changing the
actual selector value.

Because of this functionality, using far pointers in standard and
enhanced modes is much easier. In the following four circumstances,
far pointers to data can be assumed to be valid:

1. Global memory that is allocated with GlobalAlloc as movable and
 nondiscardable

 The far pointer returned from GlobalLock can be assumed to be valid
 as long as the GlobalUnlock function has not been called. Once
 GlobalUnlock has been called, the far pointer can no longer be
 assumed to be valid because the memory may be discarded. However,
 the far pointer will remain valid in the case of memory that is
 nondiscardable and is not an automatic data segment. Because of the
 selector technology discussed above, movable memory can move
 without invalidating the far pointer.

 Note: If a block is reallocated using GlobalReAlloc and the new
 size requires a different number of selectors (for example 50K
 reallocated to 110K or 65K reallocated to 63K), the base selector
 value may be changed. Each selector can refer to a maximum of 64K
 of memory.

2. Far pointers to static or global data within an application

 Static and global data within an application is stored in the
 static data area of the application's DGROUP. Because the whole
 DGROUP segment is moved, the far pointer will still be valid after

 a move in protected mode.

3. Automatic data within a function as long as that function has not
 been exited

 Far pointers to automatic data will be valid as long as no return
 has been executed from the function that allocated the data.
 Automatic data is stored on the stack. When an application returns
 from a function, the memory allocated by that function is no longer
 allocated and cannot be assumed to be valid. This then makes memory
 that a far pointer references subject to corruption.

4. Local memory that has been locked with LocalLock

 Memory allocated with LocalAlloc comes from the local heap. Memory
 on the local heap can be moved around within the DGROUP segment,
 which will cause the offset value of its location to change. This
 will invalidate any far pointers to the memory. The LocalLock
 function fixes the memory within the local heap.

For compatibility with future versions of Windows, far pointers to
data within an application should NEVER be passed to other
applications. The current version of Windows uses one LDT (local
descriptor table) for all descriptors associated with data. In the
future, one LDT may be used for each application's data, while a GDT
(global descriptor table) may be used for shared data. If a
selector:offset combination from one application is used in another
application in such an environment, the selector will be used to
reference a descriptor in the called application's LDT. The descriptor
in the called application's LDT will most likely not contain the
correct reference for the memory block. The only supported way to
share data between applications is global memory allocated with the
GMEM_SHARE (also known as the GMEM_DDESHARE) flag.

Selectors that are aliased, using AllocDStoCSAlias or AllocSelector,
will not be updated when the memory is moved. For this reason, far
pointers that include aliased selectors cannot be assumed to be valid
unless the memory has been fixed into place with GlobalFix.

For a more detailed description of memory management under protected
mode and Windows 3.0, see Chapters 17 and 18 of "Peter Norton's
Windows 3.0 Power Programming Techniques." This book is available from
Bantam Computer Books and is coauthored by Paul Yao.

Additional reference words: 3.00 3.0
KBCategory:
KBSubcategory: KrMmGlobalMem

INF: GlobalReAlloc() and GMEM_ZEROINIT Clarified
Article ID: Q92942
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

GlobalReAlloc() is documented in the Windows API's reference manuals. This
is a clarification of one of the flags you can set for GlobalReAlloc().
Under one circumstance, when GlobalReAlloc() is used with GMEM_ZEROINIT, it
may not zero out all of the reallocated memory. This situation occurs when
GlobalReAlloc() is called to shrink a block of memory and then enlarge it.

More information:

When GlobalReAlloc() is used with GMEM_ZEROINIT to increase the size of a
block of memory in the global heap, it will zero out only the bytes it adds
to the memory object; it does not initialize any of the memory that existed
before the call.

Windows allocates memory from the global heap in multiples of 32 bytes;
enhanced mode allocates memory on even 32-byte boundaries, and standard
mode allocates memory on odd 32-byte boundaries (that is, /E allocates
32/64/96 bytes, /S allocates 16/48/80 bytes).Thus, when 10 bytes are
requested, enhanced Windows actually allocates 32 bytes; when 55 bytes are
requested, enhanced Windows allocates 64 bytes.

Suppose we have the following sequence of calls in Windows enhanced mode:

HGLOBAL hMem ;

 // 32 bytes are actually allocated, not 10 because Windows
 // allocates global memory in multiples of 32 bytes. All
 // 32 bytes are initialized to zero.
hMem = GlobalAlloc(GMEM_ZEROINIT | GMEM_FIXED, 10);

 // Here, we allocate 32 more bytes and add them to the end of
 // the first 32 bytes. ReAllocating to 40 bytes will cause the
 // block to be 64 bytes long. Only the second 32
 // bytes are initialized to zero. The first 32 bytes are left
 // alone.
hMem = GlobalReAlloc(hMem, 40, GMEM_ZEROINIT | GMEM_FIXED);

 // Copy 39 bytes into the memory block. The first 39 bytes
 // will contain the string.
lstrcpy((LPSTR)GlobalLock(hMem), "This is a big enough string for our job")

 // Now we shrink the block to 10 bytes. After the call, the
 // block will be 32 bytes long; the second 32 bytes are freed
 // and will no longer exist. The first 32 bytes will still

 // contain the same characters as before the call.
hMem = GlobalReAlloc(hMem, 10, GMEM_ZEROINIT | GMEM_FIXED) ;

 // Now, we enlarge the block back to 40 bytes. After the call,
 // the block will be 64 bytes long, and the second 32 bytes
 // will be initialized to zero. The first 32 bytes will be left
 // alone, however. The area between bytes 10 and 32 does *not*
 // get initialized!
hMem = GlobalReAlloc(hMem, 40, GMEM_ZEROINIT | GMEM_FIXED) ;

When GlobalReAlloc() is called to shrink the block, we told it that we
wanted only 10 bytes; that's all we should use. Then when we enlarge it
back to 40 bytes, GlobalReAlloc() only initializes the memory it adds to
the current block--which is from bytes 33 to 64. The bytes between 10 and
40 were previously used, but GlobalReAlloc() did not initialize them
because it did not allocate them.

As a result, applications that call GlobalReAlloc() to shrink and then re-
enlarge a block of previously used data should not expect that all the
bytes will be initialized to zero.

Additional reference words: 3.0 3.00 3.10 3.1
KBCategory:
KBSubcategory: KrMmMemattribs

INF: Large Model and Windows 3.0 Protected Mode
Article ID: Q79275
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

Large model applications can have more than one data segment. Windows fixes
the extra data segments of applications that have more than one data
segment even if they are declared MOVEABLE in the module definition (DEF)
file. Normally, these fixed data segments are movable by Windows's memory
manager in protected mode. However, there is a problem, which causes fixed
segments to be page locked, with the Windows 3.0 memory manager. When a
segment is page locked, the physical memory associated with the segment
becomes an obstacle for the memory manager because the segment cannot be
moved in physical memory, nor can it be paged to disk. This behavior can
have a serious impact on system performance.

There are other issues to consider with respect to large model
applications. An application compiled with large model runs much slower
than an application compiled with medium or small model due to FAR
variables accesses. Large model applications use far pointer arithmetic,
which is generated by the compiler when the -AL compiler switch is used, or
when a far pointer is explicitly declared in the application code.

Also, Windows cannot run more than one instance of an application that has
more than one data segment, because Windows's kernel cannot presently
resolve fix-ups to multiple data segments. For these reasons, it is
strongly recommended that Windows applications use only small or medium
memory model, which uses only one data segment.

More Information:

A large model application is limited to one instance because the Windows
kernel presently cannot resolve fix-ups to multiple data segments. Consider
the following code fragment that establishes DS:

 mov ax, _data_01
 mov ds, ax

This code is shared by all instances of the application. When the code is
loaded, only one value can be put into DS. Windows has no way to "glue," or
associate, other data segments to a given instance of the application.

Windows's determination to allow only one instance is made when the loader
scans the EXE header of the application. Upon discovery of more than one
data segment, the application is limited to one instance.

In summary, there are three problems with applications compiled with large
model:

1. Large model applications use far pointer arithmetic, and thus will run

 more slowly.

2. Large model applications that have more than one data segment will have
 their extra data segments page locked by Windows and cause the
 degradation of Windows's memory management.

3. Large model applications that have more than one data segment can run
 only one instance.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrModlsLargemod

INF: C Run-Time Functions Can Use Far Pointers in Medium Model
Article ID: Q66462
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

Far pointers to data can be used in calls to the C run-time library
routines written using the medium model. This is often necessary
because many Windows applications are written using the medium model,
but must pass far data pointers to the medium model C run-time library
routines. Unless precautions are taken, passing far pointers to medium
model C run-time routines will fail.

To use far pointers in calls to medium model C run-time routines, the
model-independent version of the C run-time functions must be
explicitly specified. A model-independent version of a C run-time
function requires specification of the size of the data pointers
required (NEAR or FAR) for both function parameters and return values.

Not all C run-time routines have model-independent versions. To
determine if a routine has a model-independent version, please consult
the header file associated with the routine or the C run-time source
manual.

More Information:

When an application is compiled using the medium memory model, the C
compiler assumes that the application will have one data segment and
multiple code segments. Because the application has only one data
segment, all pointers to data are assumed to be near pointers.
Therefore, when the compiler encounters a C run-time function in the
source code, it automatically assumes that any pointer parameters
contain near pointers. The compiler uses the appropriate medium model
declaration for the run-time functions. This is appropriate for NEAR
data items, but many Windows API functions require or return FAR
pointers, such as GlobalLock().

To override the compiler's assumptions specify the model-independent
version of the desired routine in the application source code. The
header file associated with the routine or the C run-time source
manual can be used to determine which C run-time routines have
model-independent versions. Typically, the model-independent versions
of C run-time functions are preceded by an "_n" or an "_f". For
example, strdup(), a memory model-dependent function, has two
model-independent derivatives: _nstrdup() for NEAR pointers and
_fstrdup() for FAR pointers.

When using the model-independent versions of the C run-time routines,
the compiler will not assume that the application's data is near.
Thus, far pointers can be used in medium model applications where near
pointers would normally be used.

Unfortunately, not all C run-time routines offer this flexibility. If
the routine does not have a model-independent version, two options are
available:

1. Write a model-independent routine that offers the same functionality
 as the C run-time routine.

2. Copy the data into the default data segment so that near pointers,
 and the standard C run-time routines, can be used.

One C run-time routine that demonstrates model independence is
strncpy(). If the application source code includes a line similar to
the following

 Char_ptr = strncpy(String1, Const_String2, Count);

the compiler will use the default declaration for the routine. That
declaration is found in the header file and resembles the following:

 char *strncpy(char *string1, const char *string2, size_t);

In this situation, the data must be in the default data segment
because the routine will use the DS register when referencing both
strings.

In the same medium model applications, if one or both of the strings
are in a data segment other than the default data segment, modify the
same source line as follows:

 Char_ptr = _fstrncpy(String1, Const_String2, Count);

In this case, the compiler will use the following function declaration

 char _far * _far _fstrncpy(char _far *string1,
 const char _far*strings,
 size_t count);

and the application will then properly access the data in the far
segments.

Note: When using the same C run-time routine in a large model
application, the default function declaration will be the
model-independent version. Thus, in the example above, the compiler
will replace the call to strncpy() with an appropriate call to
_fstrncpy().

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrModlsCusted

INF: Windows 3.0 Does Not Support Static Data Segments > 64K
Article ID: Q67707
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

Windows version 3.0 does not support static data segments that are
larger than one memory segment (64K). This limitation has been removed
from Windows version 3.1. In Windows version 3.0, Windows reserves the
right to load any segment from the executable file into any location
in memory. Because the loader does not necessarily load consecutive
segments into contiguous memory, data structures such as huge arrays
that require consecutive memory blocks are not guaranteed to be loaded
correctly.

Under Windows 3.0, if an application requires a huge array, allocate
the array dynamically, at run time, rather than statically, at compile
time. This can be done by using the GlobalAlloc function to obtain a
memory block that is accessed through a huge pointer.

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrModlsCusted

INF: Sample Code Unlocks Large-Model Extra Data Segments
Article ID: Q83363
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

An application that is compiled using the large memory model can have
multiple code segments and multiple data segments.

Under Windows 3.0, all the data segments except for the first one (the
so called "extra" data segments) are loaded into memory segments that
are fixed and page locked. Fixed and page locked segments interfere
with effective memory management. They reduce the amount of free
memory addressed below 1 megabyte (MB) in the linear address space,
and in some cases, cause out-of-memory errors as additional
applications are run.

Under Windows 3.1, extra data segments are loaded into movable memory
and the above difficulties with fixed and page locked segments do not
apply.

A large model application can change the attributes of its extra data
segments by calling the GlobalPageUnlock and GlobalUnfix functions.
However, to do this effectively, the application must be able to
enumerate the selectors for its extra data segments.

LARGEAPP is a file in the Software/Data Library that demonstrates
using the GlobalPageUnlock and GlobalUnfix functions to change the
attributes of an application's extra data segments. LARGEAPP contains
the source code to two applications: LARGEAPP, which is a large-model
application for the Windows environment, and SYMSEG, which is an
MS-DOS (non-Windows) application.

SYMSEG is a utility that reads a symbol file produced by the Microsoft
Linker, and creates a table of the data segments in an application.
LARGEAPP uses the information from this table to enumerate its own
data segments.

LARGEAPP determines the version of Windows under which it is running.
The segment attributes must be changed only if the application is
running under Windows 3.0.

LARGEAPP can be found in the Software/Data Library by searching on the
word LARGEAPP, the Q number of this article, or S13378. LARGEAPP was
archived using the PKware file-compression utility. The Microsoft C
Compiler version 6.0 and the Microsoft Macro Assembler (MASM) version
6.0 are required to build the files in LARGEAPP and to use the
techniques of this sample.

Additional reference words: 3.00 3.10 softlib LARGEAPP.ZIP
KBCategory:
KBSubcategory: KrModlsLargemod

INF: Using Large Memory Model, Microsoft C/C++, & Windows 3.1
Article ID: Q90294
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

In Windows version 3.0, using the large memory model with Microsoft C
version 6.0 is not recommended. For more information on the problems
that occur when using the large memory model under Windows 3.0, query
this knowledge base on the following words:

 large and model and protected

Windows version 3.1 and the Microsoft C/C++ version 7.0 compiler have
resolved most of these problems and make the large memory model much
more suitable for developing applications under Windows 3.1.

More Information:

There are three main problems when using the large memory model under
Windows:

1. Large model applications can have multiple data segments (this is
 always the case when compiling with Microsoft C 6.0). In Windows
 3.0, these extra segments are loaded as FIXED and page-locked.
 Having a large amount of FIXED page-locked memory results in a
 serious degradation of the memory manager's performance. FIXED
 memory is allocated from the bottom of the global heap, which means
 it normally lies in conventional memory (below 1 MB), which is
 needed by the Windows loader when it loads a new module into
 memory. For more information on this topic, query this knowledge
 base on the following words:

 using and memory and below and megabyte

 This problem has been corrected in Windows 3.1. In Windows 3.1, an
 application's code and data segments are always loaded as MOVEABLE,
 regardless of the segment attributes specified in the application's
 definition (.DEF) file. A DLL's code and data segments are loaded
 exactly as they are specified in the DLL's .DEF file.

2. Under both Windows 3.0 and Windows 3.1, only one instance of an
 application with multiple data segments can be run at one time.
 This is because the Windows loader can't fix-up multiple instances
 of a far pointer because code is shared among all instances of an
 application.

 In most cases, this problem may be resolved by using the /Gx and
 /Gt compile options with the Microsoft C/C++ 7.0 compiler. The /Gx
 option causes the compiler to force static data into the default

 data segment, which results in the application having only one data
 segment. Note, however, that this works only if the application's
 static data, string literals, stack, and heap all fit into a 64K
 segment.

 The /Gt switch specifies the size a static object must be to be
 allocated its own data segment. When trying to create a single data
 segment, this threshold value should be large enough to ensure
 that no data objects are allocated outside of the default data
 segment. If the /Gt option is not specified, the data threshold
 will be 32767.

3. The final problem with using large model under both Windows 3.0 and
 Windows 3.1 is the performance degradation that occurs when an
 application uses far pointers to access its data.

 When running under the protected mode of the Intel 286, 386, and
 486 processors, a far address is a combination of a selector and an
 offset. A selector is essentially an index into an array called a
 descriptor table. A descriptor is an 8-byte value that contains
 information about the segment, such as its base address, size,
 read/write privileges, and so forth.

 Whenever a far variable is referenced in protected mode, the
 processor must load the descriptor into one of the segment
 registers' descriptor cache and mark the descriptor as being
 accessed. This means that a reference to a far variable requires at
 least two reads from and one write to memory just to obtain the
 variable's linear address.

 Adding this delay to the time needed for performing far pointer
 arithmetic amounts to a significant loss of performance when
 compared to the medium model, which uses near pointers for data.
 One method to increase the performance of a large model application
 is to explicitly declare commonly used global or static variables
 as being NEAR, which causes the compiler to allocate the variable
 in the default data segment, and to use a near pointer when
 referencing the variable.

Conclusion:

Because Windows 3.1 and Microsoft C/C++ 7.0 have resolved most of the
problems related to use of the large memory model, developing
application for Windows 3.1 with the large memory model is much more
acceptable than it was under Windows 3.0 and Microsoft C 6.0.

Additional reference words: 3.00 3.0 3.10 3.1 6.00 6.0 7.00 7.0
KBCategory:
KBSubcategory: KrModlsLargemod

FIX: Using fputc() or fgetc() in Large Model DLL UAEs
Article ID: Q77476

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9110012

SYMPTOMS
 When the function fputc or fgetc is used in a Windows dynamic-link
 library (DLL) created with the LDLLCEW.DLL library, the application
 experiences an unrecoverable application error (UAE).

CAUSE
 The functions are retrieving a near pointer from the stack when a
 far pointer is required.

STATUS
 Microsoft has confirmed this to be a problem in the Microsoft C
 large-memory-model DLL run-time library provided with the Windows
 Software Development Kit version 3.0. This problem was corrected in
 the Microsoft C/C++ Optimizing Compiler version 7.0.

Additional reference words: 3.00 7.00
KBCategory:
KBSubcategory: KrModlsNearfarcls

INF: Differences Between Task Handles and Instance Handles
Article ID: Q76676
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

Windows creates two handles associated with each task running in the
system. One handle is the instance handle, hInstance, which is passed
to the WinMain function when the program starts execution. The other
handle is the task handle, hTask, which is returned by GetCurrentTask.

The numerical values of hInstance and hTask are different. In some
routines, hTask can be used in place of hInstance without any
problems. In other routines, using hTask in place of hInstance causes
incorrect behavior and may result in unrecoverable application errors
(UAEs). Using hTask in place of hInstance is considered bad form and
will probably cause problems when the application is run under future
versions of Windows.

To retrieve the instance handle for the application currently running,
use the following code fragment:

 hInstance = GetWindowWord(GetActiveWindow(), GWW_HINSTANCE);

To retrieve the task handle for the application currently running, use
the following code fragment:

 hTask = GetCurrentTask();

More Information:

The instance handle, hInstance, is used to identify the data
associated with a particular instance of an application. The task
handle, hTask, is the handle to a structure, called the task database
(TDB), which contains information about the task (for example, its
queue, module handle, and so forth). The instance handle and the PDB
(program database), also known as the PSP (program segment prefix),
are also stored in the task database. The GetCurrentPDB() function
returns a handle to the current PDB.

Each instance of an application has both an instance handle and a task
handle. Dynamic-link libraries (DLLs) are not tasks; therefore, they
have only an instance handle and do not have a task handle.

Additional reference words: 3.0 3.00
KBCategory:
KBSubcategory: KrTsksinsDtabse

INF: HANDLEs Returned by GetModuleHandle and LoadLibrary
Article ID: Q78327
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

The GetModuleHandle and LoadLibrary functions each return a HANDLE
datatype as documented; however, these two functions have distinct
purposes.

GetModuleHandle returns a module handle [the handle to the PSP
(program segment prefix)].

LoadLibrary calls the LoadModule function with a null lpParameterBlock
parameter. If the name of a library is specified in a call to
LoadLibrary, a module handle is returned. If the name of an executable
file is specified in the call to LoadLibrary, an instance handle is
returned.

In either case, functions that require a HANDLE-type parameter, such
as GetProcAddress, will recognize both types of handles.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrTsksinsDtabse

INF: Retrieving the Names of Simultaneous Tasks Under Windows
Article ID: Q80124
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

There are situations when it is necessary for an application to obtain
a list of all applications that are running in the Windows environment
at a particular time. Instead of using the EnumWindows() function and
an application-supplied callback function to enumerate all parent
windows, the application can retrieve a handle to the first window in
the task list and walk through the list to obtain the names of all
windows in the task list.

More Information:

The most efficient way to retrieve the name of each task running under
Windows is to use the GetWindow() function. GetWindow(hwnd,
GW_HWNDFIRST) provides the handle to the first window in the task
list. The application can walk through the task list by calling
GetWindow(hwndCurrent, GW_HWNDNEXT). The following example
demonstrates how to obtain a handle to each top-level window. The
GetWindowText() function provides the name of each window from its
handle.

 hwndNext = GetWindow(hWnd, GW_HWNDFIRST);
 while (hwndNext)
 {
 if ((hwndNext != hWnd) && // Do not get this application's
 // name.
 (IsWindowVisible(hwndNext)) &&
 (!GetWindow(hwndNext, GW_OWNER)))
 {
 if (GetWindowText(hwndNext, (LPSTR)szTemp, sizeof(szTemp)))
 {
 // This is a valid top-level window handle.
 // Its name is in szTemp...
 }
 }
 hwndNext = GetWindow(hwndNext, GW_HWNDNEXT);
 }

The code above will retrieve the name of each visible window. To also
retrieve the names of invisible windows, remove the call to
IsWindowVisible().

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrTsksinsModnam

INF: Heap and Stack Usage Within Windows
Article ID: Q10641
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

The following information clarifies heap and stack usage within a
segment versus heap and stack usage within the application as a whole,
for Windows versions 2.x and 3.0.

An application gets a single default data segment, from which the
stack is allocated. The remainder of the data segment is used for
static data and the dynamic local heap.

The STACKSIZE keyword in the .DEF file specifies the size of the
application's stack; it is allocated from DGROUP and therefore is
limited to a maximum size of (64K - heap size - static data) bytes. The
stack size is not dynamically enlarged or reduced.

The HEAPSIZE keyword in the .DEF file specifies the initial default
local heap size. Windows attempts to enlarge the heap size when local
allocations fail; however, the heap is limited to a maximum size of
(64K - stack size - static data).

The sum of the static data, stack, and local heap cannot exceed 64K.

Multiple local heaps can be managed using the LocalInit() call and
swapping the DS register as needed. For more information on this
technique, query on the following words:

 handle and limit and globalalloc and register
Chapter 18 (pages 707-724) of "Windows 3.0 Power Programming
Techniques," by Paul Yao and Peter Norton (Bantam Computer Books),
contains more details about this technique.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrTsksinsMisc

INF: Why WinExec() Returns Error Code 8: Insufficient Memory
Article ID: Q66391
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

When the value 8 is returned from the WinExec() function, it indicates
"insufficient memory to start application." This is the same condition
indicated by the value 8 returned from MS-DOS Interrupt 21h Function
4Bh. This return value is not listed on page 4-459 of the "Windows
Software Development Kit Reference Volume 1," version 3.0.

The WinExec() function is used to start a Windows or non-Windows
application from inside a Windows application. If the value returned
from WinExec is greater than 32, the application has been started
successfully; otherwise, the value returned is an error code.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrTsksinsSpawn

INF: Windows: Nonpreemptive vs. Preemptive Scheduling
Article ID: Q11248
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

Preemptive scheduling, which Windows DOES NOT do, is defined in the
following way:

 Between any two application instructions, N instructions may
 execute in another application's context, where N is greater than
 or equal to zero.

A nonpreemptive system, such as Windows, will guarantee that this
number N will always be zero.

In nonpreemptive scheduling, an application is not forced out of
context asynchronously (that is, it is not preempted). Instead, the
application runs until it explicitly gives up control. Windows-aware
applications give up control through various system calls. Although
they are not aware of it, DOS applications give up control whenever
they attempt various I/O functions.

DOS applications running under Windows 3.0 are in fact preemptively
multitasked. In contrast, all WINDOWS applications are nonpreemptively
multitasked. When the system is viewed from a Win386 perspective,
Windows runs in the system virtual machine (VM) and that VM competes
for time slices along with the rest of the DOS applications running in
other virtual machines. Keep in mind that unlike DOS applications, all
windows applications run inside the system VM, and are not given their
own virtual machine.

Note: An interrupt is not considered to be a form of preemption unless
there is an application context switch during the interrupt. An
interrupt takes the execution stream into the kernel, which returns
back to the same place without running another application, much in
the same way a call would.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrTsksinsMisc

INF: How to Determine When Another Application Has Finished
Article ID: Q67673
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:
Two separate applications sometimes need to cooperate in the Windows
environment. Two Windows applications may work in tandem, or a Windows
application may require the services of a non-Windows application.

This article examines the issues involved when a Windows application
requires notification that another application has completed its
processing.

More Information:

First, the following constraints should be considered:

1. Windows was not designed to synchronize the operation of a Windows
 application with a non-Windows (MS-DOS) application in any mode
 (real, standard, or 386 enhanced).

2. Windows does not provide any automatic way of determining if
 another application has finished, or was run correctly.
This first section included below discusses techniques that can be
included in code that is written for cooperating applications (for
example, when both are Windows applications, and when one is for
Windows and the other is not). The second section listed below
discusses techniques to apply when the other application is beyond the
programmer's direct influence.

Techniques to Use for Cooperating Applications
--

The following are two options that can be used if the programmer is
developing both applications and each runs under Windows:

1. The two applications can communicate through a dynamic data
 exchange (DDE) messaging protocol that the programmer establishes.
 DDE is explained in Chapter 22 of the "Microsoft Windows Software
 Development Kit Guide to Programming," version 3.0.

2. Each application can register the same application-specific message
 text with Windows via the RegisterWindowMessage() function and
 receive a numeric value for the message. The terminating
 application then sends this value to the other application. This
 can be accomplished by broadcasting the message to all windows in
 the system. See the documentation for the PostMessage() function
 in the "Microsoft Windows Software Development Kit Reference
 Volume 1" for more information.

When one of the cooperating applications that is being developed does
not run under Windows, the following must occur:

1. When the MS-DOS application completes or encounters a fatal error,
 it should write a message into a specified file in the TEMP
 directory.

2. The Windows application should then perform the following steps:

 a. Use the SetTimer() function to create a system timer that will
 fire at desired intervals. The estimated completion time of the
 function is one possible interval. Another would be "estimated
 time to first possible failure" if the MS-DOS application will
 be writing an error string for the Windows application to
 display.

 b. Initiate the execution of the MS-DOS application with the
 WinExec() function and continue with any normal processing.

 c. Upon receipt of the timer message, the TEMP directory can be
 checked to determine if a message file is present. If the file
 is present, the message in the file is parsed to see if
 termination was due to success or failure.

Techniques to Use for Third-Party Applications
--

For a third-party application, the steps taken must access information
that is entirely external to the MS-DOS application. One possible
way to implement this method is to use the title of the WINOLDAP
window to determine if the application is still running. In this case,
the following steps should be taken:

1. Use the SetTimer() function to create a system timer. Timer
 messages should be at least a few seconds apart. This allows
 WINOLDAP to create its window and begin processing.

2. In real and standard modes, Windows application processing stops
 while the MS-DOS application is processing. In enhanced mode,
 Windows' behavior depends on the settings in the program
 information file (PIF) that corresponds with the MS-DOS
 application. For more information about the allocation of the
 processor when an MS-DOS application is running, query on the
 following keywords:

 prod(winsdk) and WinExec() and dependent
3. When the timer message is received, the FindWindow() function is
 then used to search for the caption of the MS-DOS application's
 window. The caption is created from the "Window Title" section of
 its PIF file, or if it is blank or not found, the filename of the
 old application. If the caption is no longer present, the
 application is deemed to have completed its processing.

Another possible solution is to create a batch file in MS-DOS that
checks for error level information returned from the program, and then
creates files in the TEMP directory. The Windows application can then

check for these "result" files to determine the MS-DOS application's
status.

The following batch file creates a sentinel file named BEGIN.TMP.
Until this file is deleted, the MS-DOS application is considered to be
running. Successful completion creates the result file, END.TMP, and
then BEGIN.TMP is deleted. An execution error creates the result file
named STOP.TMP, and then removes BEGIN.TMP.

 1: echo start > %TEMP%\begin.tmp
 2: MyDosApp
 3: if errorlevel 1 goto bad
 4: if errorlevel 0 goto good
 5: goto end
 6: :bad
 7: echo bad > %TEMP%\stop.tmp
 9: goto end
 10: :good
 11: echo good > %TEMP%\end.tmp
 12: goto end
 13: :end
 14: del begin.tmp
 15: goto end

A system timer is employed as above to direct the Windows application
to check for the existence of the sentinel and result files.

If it is necessary for a MS-DOS application to communicate with
Windows, then contact the SoftBridge company. SoftBridge can provide
additional information on its product offerings. Contact information
is listed on page 107 of the "Windows Shopping" book, supplied with
the Windows version 3.0 retail product.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrTsksinsMonitor

INF: The Purpose of WINSTUB in Windows SDK
Article ID: Q11591
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

WINSTUB is provided with the Windows Software Development Kit (SDK) as
a normal DOS program. It contains only an assembly equivalent to a
printf() line. Since it is assembly, it does not have the overhead it
would if it used the C runtime library. WINSTUB can be used as a stub
if no DOS version of a program exists. To have both a Windows version
and a DOS version of a program in one EXE file, replace the following
line in the DEF file

 STUB 'WINSTUB.EXE'

with the following line

 STUB 'MYDOSAPP.EXE'

and relink.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrTsksinsMisc

INF: Sample Code Spawns Task and Waits for its Termination
Article ID: Q84456

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.0
 and 3.1
--

Summary:

TERMWAIT is a file in the Software/Data Library that demonstrates how
an application can launch a child task and then wait for it to
complete before executing specific code. TERMWAIT uses notification
messages from the Toolhelp dynamic-link library (DLL) to determine
that the child task has completed. The techniques demonstrated by the
TERMWAIT sample work for both Windows and MS-DOS (non-Windows) child
tasks.

TERMWAIT can be found in the Software/Data Library by searching on the
keyword TERMWAIT, the Q number of this article, or S13429. TERMWAIT
was archived using the PKware file-compression utility.

More Information:

The TERMWAIT sample application calls the NotifyRegister function to
install a notification callback function before it calls the WinExec
function to launch the child task. If a callback function is
registered, it is called before any task in the system terminates. The
notification callback function calls the TaskFindHandle function to
fill a TASKENTRY data structure with information about the terminating
task. When the callback determines that the child task has terminated,
it notifies the TERMWAIT application.

When it spawns the child task, TERMWAIT sets its bChildIsExecuting
global variable to TRUE. The notification callback resets this
variable to FALSE when the child task is complete. Any code that must
not execute while the child task is running can query the value of the
bChildIsExecuting flag. During the wait, any menu selections that
will cause reentrancy problems should be disabled. Doing so keeps the
user informed about the options that are presently valid. In the
TERMWAIT sample, the AfterChildHasTerminated function contains code
that is executed only after the child task has completed.

If an application tracks a number of child tasks, its NotifyRegister
callback function should process both the NFY_STARTTASK and
NFY_EXITTASK notifications. The callback function uses these
notifications to maintain a list of child task handles. Note that
while no two tasks will have the same handle, it is possible for task
handles to be reused. Consequently, if one task ends and a new task
begins, the new task can use the same task handle.

Version 3.1 of the Windows Software Development Kit is required to
build the TERMWAIT sample. However, the compiled code is compatible

with both Windows 3.0 and 3.1. Note that because the TOOLHELP.DLL is
not part of the default installation for Windows 3.0, it must be
installed into the Windows system directory (by default,
C:\WINDOWS\SYSTEM) before TERMWAIT will run. The TOOLHELP.DLL file is
provided as a redistributable file with the Windows 3.1 SDK.

Additional reference words: 3.00 3.10 softlib TERMWAIT.ZIP synchronize
KBCategory:
KBSubcategory: KrTsksinsSpawn

BUG: GetModuleFileName Returns Relative File Path
Article ID: Q85330

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
--

SYMPTOMS
========

When the GetModuleFileName() function returns a reference to a
dynamic-link library (DLL) file, the reference is relative (not fully
qualified) under the following circumstances:

 - One of the directory references in the MS-DOS PATH environment
 variable is relative. Assume that the relative directory
 reference refers to drive X.

 - An application is implicitly linked to a DLL. The DLL is installed
 in the current (default) directory of drive X.

 - The application is installed in a directory other than the one
 in which the DLL is installed.

STATUS
======

Microsoft has confirmed this to be a problem in Windows version 3.1.
We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

The following describes the situations under which this problem
occurs:

 - The PATH statement in the AUTOEXEC.BAT file resembles the
 following:

 PATH=C:\DOS;C:\WINDOWS;D:.;C:\APPS

 The relative reference in this path refers to drive D.

 - Run an application from the C:\WINDOWS directory that implicitly
 links to a DLL that is stored in the current (default) directory
 of the D drive.

 - If any application calls the GetModuleFileName() to retrieve the file
 name for the DLL, the function returns a relative reference to the
 file (for example, D:.\DLL.DLL).

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrTsksinsModnam

PRB: Avoiding
Article ID: Q86230
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

SYMPTOMS
 During the process of loading an application, Microsoft Windows
 displays an application execution error message box with the
 following message:

 Insufficient memory to run this application; close one or more
 Windows applications and try again.

CAUSE
 One of the reasons this message is displayed is that the system has
 no memory available with an address less than 1 megabyte (MB). When
 Windows loads an application, it calls the GlobalDosAlloc function
 to allocate memory in the address space below 1 MB for the
 application's task database. If the GlobalDosAlloc call fails,
 Windows displays the application execution error message.

RESOLUTION
 Use as little memory below 1 MB as possible.

More Information:

A common situation that leads to an insufficient memory error regards
an application developed using a large memory model that includes many
extra data segments and/or very large extra data segments. When
Windows loads the application, it allocates fixed memory to hold the
extra data segments. In Windows 3.0, these fixed memory blocks are
also page locked, which prevents the memory manager from moving the
blocks to disk as memory fills.

Fixed memory is allocated from the bottom of the global heap, which
starts at the lowest possible memory address. If all the memory below
1 MB is filled with page locked memory blocks, Windows cannot move
blocks in memory or swap blocks to disk to free any memory. When
Windows cannot allocate a task database for a new task, it displays
the error message box discussed above.

For more information on the page locking of fixed memory segments in
Windows 3.0, query on the following words in the Microsoft Knowledge
Base:

 prod(winsdk) and buglist3.00 and page and locks
An application can determine whether all memory addressed below 1 MB
is in use by attempting to allocate a small block of memory with the
GlobalDosAlloc function. (Windows 3.0 requires 512 bytes of low memory

for the task database of each application.) If the allocation fails,
Windows will not be able to start another program. Even if the
allocation is successful, the failure of another memory allocation
required by the application may prevent it from loading.

One way to address this problem is to remove the page lock from an
application's extra data segments. However, memory accessed by an
interrupt service routine must be page locked to keep its data
available at all times. An application can use the services of the
tool helper dynamic-link library (TOOLHELP.DLL) and a few Windows
functions to modify the flags on the extra data segments. After
modification, the data segments are movable and not page locked.

Use the GlobalFirst and GlobalNext functions provided by the tool
helper library to walk the global heap looking for memory blocks owned
by the application. If a memory block is page locked (the wcPageLock
field of the GLOBALENTRY data structure is not zero), call the
GlobalPageUnlock function to change the lock count for the memory
block. Calling GlobalRealloc to change the block from fixed to
movable memory might also be desirable.

For more information on the tool helper library, see Chapter 8 of the
"Microsoft Windows Software Development Kit: Programmer's Reference,
Volume 1: Overview" version 3.1 manual.

Another method to unlock data segments uses the GlobalPageUnlock and
GlobalUnfix functions. For more information on this technique, query
on the following words in the Microsoft Knowledge Base:

 prod(winsdk) and largeapp
Additional reference words: 3.00 3.10 pagelocked page-locked SDK
KBCategory:
KBSubcategory: KrTsksinsSpawn

INF: SpawnAndWait DLL Provides Asynchronous Spawn Function
Article ID: Q105116

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows
 version 3.1
--

SUMMARY
=======

The sample RUNWAIT demonstrates using TOOLHELP.DLL to provided a
dynamic-link library (DLL) function that spawns applications and waits
for their termination before returning from the function call. The
sample is compatible with Visual Basic (VB) and Windows 3.0. The
sample loads a hidden task at DLL startup time to own the Toolhelp
callback.

RUNWAIT can be found in the Software/Data Library by searching on the
word RUNWAIT, the Q number of this article, or S14345. RUNWAIT was
archived using the PKware file-compression utility.

MORE INFORMATION
================

The following is the VB function declaration (this must be on a single
line in VB):

Declare Function SpawnAndWait& Lib "RUNLIB.DLL" (ByVal parenthwnd%,
ByVal lpszOp$, ByVal lpszFile$, ByVal lpszParams$, ByVal lpszDir$,
ByVal nShow%)

DWORD SpawnAndWait(hwnd, lpszOp, lpszFile, lpszParams, lpszDir, fsShowCmd)

HWND hwnd /* Handle of parent window */
LPCSTR lpszOp /* Address of string for operation to perform */
LPCSTR lpszFile /* Address of string for filename */
LPCSTR lpszParams /* Address of string for executable-file parameters */
LPSCTR lpszDir /* Address of string for default directory */
int fsCmdShow /* Whether file is shown when opened */

The SpawnAndWait function executes and waits for termination of the
specified application or associated file.

Parameter Description

hwnd Identifies the parent window. This window receives any message
 boxes an application produces (for example, for error reporting).

lpszOp Points to a null-terminated string specifying the operation to
 perform. This string can be "open" or "print". If this parameter
 is NULL, "open" is the default value.

lpszFile Points to a null-terminated string specifying the file to
 open.

lpszParams Points to a null-terminated string specifying parameters
 NULL; "open" is the default value. passed to the application when
 the lpszFile parameter specifies an executable file. If lpszFile
 points to a string specifying a document file, this parameter is
 NULL.

lpszDir Points to a null-terminated string specifying the default
 directory.

fsShowCmd Specifies whether the application window is to be shown when
 the application is opened. See ShowWindow for valid values.

Returns

HIWORD == hInstance of started application. Values less than 32 are errors
 returned from ShellExecute. 0xFFFF is a general error.

LOWORD == Return code of spawned application. 0xFFFF is a general error.

Comments

The file specified by the lpszFile parameter can be a document file or
an executable file. If it is a document file, this function opens or
prints it, depending on the value of the lpszOp parameter. If it is an
executable file, this function opens it, even if the string "print" is
pointed to by lpszOp.

WARNING: This function will not wait on applications such as Word and
Excel that respond to the DDE broadcast made by ShellExecute or the
second instance of multiple data applications.

WARNING: This function supports only one block at a time per task.
Calling tasks should not call this function when it has a prior
pending SpawnAndWait call.

Sample Code

DWORD SpawnAndWaitIndirect(lpSpawnWait)

LPSPAWNWAIT lpSpawnWait /* Far reference to SPAWNWAIT structure

typedef struct tagSPAWNWAIT
{
 HWND hwnd;
 LPCSTR lpszOp;
 LPCSTR lpszFile;
 LPCSTR lpszParams;
 LPCSTR lpszDir;
 int fsShowCmd;
 LPMSGPROC lpmsgproc;

} SPAWNWAIT;

Member Description
--

hwnd Handle of parent window
lpszOp Address of string for operation to perform
lpszFile Address of string for filename
lpszParams Address of string for executable-file parameters
lpszDir Address of string for default directory
fsShowCmd Whether file is shown when opened
lpmsgproc Address of application provided MessagePump (must load
 DS on entry)

void CALLBACK MessagePump(lpmsg)

LPSMG lpsg /* Long pointer to MSG to process

Message Proc is a place holder for an application-provided callback
function (which must load DS on entry) that will process messages
retrieved in RunLib's PeekMessage loop. It allows the calling
application to do modeless dialog box and accelerator message
processing.

lpmsgproc should be set to NULL if it is not used. RunLib will do a
default TranslateMessage/DispatchMessage instead.

The following is an example of a message processing function for a MDI
application:

void CALLBACK MyMessagePump(LPMSG lpmsg)
{
 if(!TranslateMDISysAccel(hClient, lpsmg) &&
 !TranslateAccelerator(hFram, hAccel, lpsmg))
 {
 TranslateMessage(lpsmg);
 DispatchMessage(lpmsg);
 }
}

Returns

HIWORD == hInstance of started application. Values less than 32 are errors
 returned from ShellExecute. 0xFFFF is a general error.

LOWORD == Return code of spawned application. 0xFFFF is a general
 error.

Comments

The file specified by the lpszFile parameter can be a document file or
an executable file. If it is a document file, this function opens or
prints it, depending on the value of the lpszOp parameter. If it is
an executable file, this function opens it, even if the string "print"
is pointed to by lpszOp.

WARNING: This function will not wait on applications such as Word and
Excel that respond to the DDE broadcast made by ShellExecute or the
second instance of multiple data applications.

WARNING: This function supports only one block at a time per task.
Calling tasks should not call this function when it has a prior
pending SpawnAndWait call.

Additional reference words: 3.00 3.10 toolhelp spawn p_wait
synchronous winexec vb
KBCategory:
KBSubcategory: KrTsksinsSpawn

FIX: Application with No Exports Crashes Under Windows 3.0
Article ID: Q88857

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.0
 and 3.1
--

Summary:

PROBLEM ID: WIN9209001

SYMPTOMS
 An application built for Microsoft Windows version 3.0a that has no
 exported functions runs correctly under Windows version 3.1, but
 crashes upon loading under Windows version 3.0a.

CAUSE
 Due to a problem in Windows versions 3.0 and 3.0a, if an
 application has no exports, it may crash upon loading depending on
 the size of the path name, the size of the resources, and the size
 of the executable file. Typical symptoms include a general
 protection (GP) fault immediately after the program is started,
 even before your application's WinMain function is called.

 This problem typically shows up only in small "stub" programs (for
 instance, programs that are used to load other applications).

RESOLUTION
 Add at least one exported function to the EXPORTS section of your
 .DEF file. The function name you add to the .DEF file must also
 have an identically named function in your source files. If
 necessary, this exported function can be a dummy function that
 simply returns.

STATUS
 Microsoft has confirmed this to be a problem in Windows versions
 3.0 and 3.0a. This problem was corrected in Windows version 3.1.

Additional reference words: 3.00 3.00a 3.10
KBCategory:
KBSubcategory: KrTsksinsMisc

INF: Callback Functions in Multiple Instance Applications
Article ID: Q102871
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 versions 3.0 and 3.1
--

SUMMARY
=======

The following are some requirements for callback functions in multiple
instance applications when compiling with Microsoft C version 7.0 or C
version 8.0 for protected-mode-only Win16:

 - Callback functions must be branded with the "__export" keyword. The
 compiler switches -GA -GEf force all far functions in a module to
 be __export. The optimum method is to add the __export keyword to
 the particular callback function and not use the -GEf switch.
 Example:

 BOOL CALLBACK __export CallBackProc

 - Callback functions called via a MakeProcInstance must load DS from
 the value in AX. Use the compiler switch -GA with the -GEa switch
 to generate prolog code to load DS from the value in AX on all
 __export functions. The default for -GA is load DS from SS, which
 is not a valid assumption in callbacks. The code when loaded into
 memory should have three NOPs instructions at __export function
 entry points. Check with your favorite debugger that can show
 mixed/asm view once the module is loaded into memory.

 - Callback functions must have an export record in the EXE header. The
 classic method is to list the function in the EXPORTS section of
 the module's .DEF file. The callback's module can be built with the
 - GA -GEe switches to place an export record in the .OBJ at compile
 time for all __export functions.

 - Callback functions must assume SS != DS, DS not loaded on function
 entry. Compile with -Aw memory model customizer to have correct
 code generated.

 - Callback functions must not call C run-time library code contained
 in the application (xLIBCyW.LIB) libraries. They assume SS == DS.

Additional reference words: 7.00 8.00 3.10 MakeProcInstance DLL
KBCategory:
KBSubcategory: KrTsksinsMpi

INF: Passing Modified Environments to Child Processes
Article ID: Q102958
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit (SDK) for Windows,
 version 3.1
--

SUMMARY
=======

To provide a new environment for Windows applications, the
LoadModule() function must be used. LoadModule() is similar to the
MS-DOS Interrupt 21h Function 4Bh call, which uses a structure to find
the new environment.

The element "envseg" must be set to the selector of a memory block
that contains a correctly formatted environment block. The loader
makes a copy of this memory block for the child process inside
LoadModule(). This copy is formatted similar to an MS-DOS 2.x
environment block. It does not have the MS-DOS versions 3.x and later
additional information, such as the full pathname of the task,
attached to the end. If startup code (such as the Microsoft C run time
earlier than C version 7.0) looks for this additional information, a
general protection (GP) fault will occur. If you are certain that the
task started via LoadModule() does not make this assumption, then it
is safe to use it.

Another bug with LoadModule() is the ownership of the copied memory
created by the loader. It's set to that of the parent, and therefore
it needs to outlive the child or its environment block will be free'ed
when the parent terminates.

If it's necessary to provide a modified environment to DOS
applications, the supported technique is to use an MS-DOS batch file.
The batch file first sets the new environment settings and then starts
the DOS application.

 SET FOOS=BALL
 DOSAPP

If the application being started is not a Windows application, the
.BAT file technique is the only supportable method. Regarding using
LoadModule(), below is sample code that passes the current task's
environment as envseg:

Sample Code

 typedef struct tagCMDSHOW
 {
 WORD wFirst;
 WORD wSecond;
 }

 CMDSHOW;

 typedef CMDSHOW FAR * LPCMDSHOW ;

 typedef struct tagPARAMETERBLOCK
 {
 WORD wEnvSeg;
 LPSTR lpCmdLine;
 LPCMDSHOW lpCmdShow;
 DWORD dwUnused;
 }
 PARAMETERBLOCK;

 typedef PARAMETERBLOCK FAR * LPPARAMETERBLOCK ;

 CMDSHOW CmdShow;
 PARAMETERBLOCK ParameterBlock;
 char szCmdName[] = "TASKMAN.EXE";
 char szCmdLine[] = "";

 ParameterBlock.wEnvSeg = HIWORD(GetDosEnvironment());
 ParameterBlock.lpCmdLine = szCmdLine;
 ParameterBlock.lpCmdShow = &CmdShow;
 ParameterBlock.lpCmdShow->wFirst = 2;
 ParameterBlock.lpCmdShow->wSecond = SW_SHOW;
 ParameterBlock.dwUnused = NULL;

 LoadModule(szCmdName, &ParameterBlock);

Additional reference words: 3.10 spawn process environment INT
KBCategory:
KBSubcategory: KrTsksinsSpawn

INF: Spawn an Application and Wait Sample Code
Article ID: Q80226
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

ARNIE.ZIP is a file in the Software/Data Library that demonstrates how
an application designed for the Windows environment can spawn another
application and suspend its execution until the spawned application
terminates. The sample application demonstrates detecting when a task
starts and completes using the TOOLHELP.DLL dynamic-link library, a
new feature of Windows 3.1.

ARNIE can be found in the Software/Data Library by searching on the
word ARNIE, the Q number of this article, or S13266. ARNIE was
archived using the PKware file-compression utility.

More Information:

The TOOLHELP DLL supplies a notification mechanism by which an
application can be notified of various events that occur in the
system. Two such events are task startup and task termination. To
install a notification hook, the application calls the NotifyRegister
function, specifying a callback procedure. The callback procedure is
called when specified events occur in the system. To determine when an
application starts and ends, watch for the NFY_TASKSTART and
NFY_TASKEND notifications in the callback procedure. When the
application no longer requires notifications, call the
NotifyUnRegister function.

Additional reference words: 3.10 softlib ARNIE.ZIP
KBCategory:
KBSubcategory: KrThTaskman

INF: Using TOOLHELP to Determine Free System Resources
Article ID: Q76247
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

In Windows version 3.1, a Windows application can obtain the amount of
free system resources in two ways:

1. By calling the GetFreeSystemResources function, which is exported
 by KERNEL

2. By calling the SystemHeapInfo function, which is exported by the
 TOOLHELP.DLL dynamic-link library

Under Windows 3.0, the GetFreeSystemResources function is not
available. If TOOLHELP.DLL is present, a Windows 3.0 application can
use SystemHeapInfo. If TOOLHELP.DLL is not present, there is no
supported method for a Windows 3.0 application to obtain the amount of
free system resources.

More Information:

The second prerelease of Windows 3.1 does not implement the
GetFreeSystemResources function. This function should be implemented
before the third prerelease is shipped.

The version of TOOLHELP.DLL included with the second prerelease of
Windows 3.1 does not implement the SystemHeapInfo function. This
function should be implemented before the third prerelease is shipped.

The version of TOOLHELP.DLL included with the second prerelease does
contain two functions for obtaining the current amount of free system
resources: UserHeapInfo and GDIHeapInfo. The THSAMPLE sample
application included with the second prerelease of the Windows
Software Development Kit version 3.1 shows how to use these calls. In
the third prerelease, these two functions will be replaced by the
single function, SystemHeapInfo.

Additional reference words: 3.00 3.10 pre-release
KBCategory:
KBSubcategory: KrThSysinfo

INF: Retrieving Application Exit Code in MS-DOS Window
Article ID: Q83301
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

Under Windows version 3.1, the value returned by an MS-DOS application
is available to other applications in the system. Under Windows
version 3.0, however, this value is not available; the exit code
returned is always zero.

More Information:

Windows supports an MS-DOS window in which to run MS-DOS (non-Windows)
applications. The WINOLDAP module serves as an interface for the
application and the remainder of the Windows environment. When the
MS-DOS application terminates, WINOLDAP retrieves the application's
exit code. Then WINOLDAP itself terminates, using the retrieved exit
code as its own exit code.

An application developed for the Windows environment can retrieve the
exit code from WINOLDAP. The application defines a call-back function
and calls the NotifyRegister function in the tool helper library
(TOOLHELP.DLL). The call-back function will receive an NFY_EXITTASK
message containing the exit code each time a task terminates.

The Windows 3.1 WINOLDAP module can return a number of error codes
which are listed and explained in the "Microsoft Windows Software
Development Kit Programmer's Reference Volume 1," page 277.

Additional reference words: 3.10
KBCategory:
KBSubcategory: KrThTaskman

INF: Sample Windows Application Produces Stack Trace
Article ID: Q92537
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

STKTRACE is a sample Windows application that contains the complete code to
obtain a stack trace of the "current task." The stack trace includes
symbolic information extracted from the symbol files, similar to that
produced by the Windows debug kernel at the time of a FatalExit. In this
sample, the stack trace is logged into a buffer and output to a message
box.

The STKTRACE sample uses the tool helper library and can be used in the
Windows versions 3.0 and 3.1 environments because TOOLHELP.DLL is a
redistributable.

STKTRACE is available in the Software/Data Library and can be found by
searching on the word STKTRACE, the Q number of this article, or S13721.
STKTRACE was archived using the PKware file-compression utility.

More Information:

Usually, the Windows debug kernel produces a stack trace on the debug
terminal when the SPACE BAR or ENTER key is pressed at the time of a
FatalExit. For more information on stack traces produced by the debug
kernel, query on the following words in the Microsoft Knowledge Base:

 stack trace space bar

However, when you are writing a debugger or a large complex application, it
might be necessary to produce stack traces in your application. Then, the
STKTRACE sample code can be helpful.

This sample consists of two main modules, GetTrace.c and GetSymbol.c, and a
driver module, StkTrace.c, which merely calls the API from the GetTrace.c
module. The GetTrace.c module contains code to walk the stack of the
current task by using the tool helper library and the GetSymbol.c module
contains code to obtain symbol names from corresponding symbol (.SYM) files
by using the symbol file format. These two modules can be plugged into any
application or a DLL (dynamic-link library).

Note that the THSAMPLE application in the \SDK31\SAMPLES\TOOLHELP directory
also illustrates how to produce stack traces for a given task that is not
the current task. In contrast, the STKTRACE sample walks the stack of the
current task by obtaining the register values from the stack and using the
StackTraceCSIPFirst() and StackTraceNext() APIs from the tool helper
library. Also, the STKTRACE sample provides symbolic information in the

stack trace.

The GetSym.c module provides symbolic information by using the symbol file
format documented in the Microsoft Windows SDK version 3.1 "Programmer's
Reference, Volume 4: Resources" manual. Given a segment:offset address,
this module finds the "nearest" public symbol in the corresponding symbol
(.SYM) file.

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrThUsedebug

PRB: Error in the THSAMPLE Sample Application
Article ID: Q99335
Summary:

The Microsoft Windows version 3.1 Software Development Kit (SDK)
provides a sample called THSAMPLE, which is in the SDK subdirectory
provide the type of information that HEAPWALK shows.

SYMPTOMS
 When the THSAMPLE sample application is run and the Enable List
 option is enabled from the Notification menu, some of the
 notification messages are not seen in the notification window.

 This problem can be demonstrated, for example, by starting the
 Windows Help application when the Enable List option is enabled in
 the THSAMPLE application. (Note that it is preferable to turn off
 the task switch notifications using the Notification/Task Switch
 Filter option).

CAUSE
 There is a simple error in the THSAMPLE application. THSAMPLE uses
 NotifyRegister() to register a callback function that receives all
 the notification messages. This callback function is then posting a
 user-defined message to itself using PostMessage() for every
 notification message it receives, and displaying it in the
 appropriate window.

 There is a default limit, however, of eight messages that an
 application's message queue can hold, whereas the callback could
 receive a lot more notifications (for example, when some
 applications are started, a number of LOADSEG notifications are
 sent).

RESOLUTION
 To correct this behavior, the application's message queue size
 must be increased by using SetMessageQueue() set to an appropriate
 number. Note that starting and exiting some applications such as
 Windows Help, Word for Windows, or Excel will produce a large
 number of LOADSEG and FREESEG notifications. Therefore, it is
 better to set the message queue size to the maximum of 120 in order
 to be able to look at most of the notifications.

Additional reference words: 3.1 3.0 problem winhelp
KBCategory:
KBSubcategory: KrThUseDebug

INF: Chaining NotifyRegister Callbacks Issuing Notifications
Article ID: Q99671
Summary:

Microsoft Windows version 3.1 can register callback functions with the
NotifyRegister application programming interface (API) function, which
is called on notifications. Callback functions that result in a
notification being issued, however, themselves fail to chain on to
other registered callbacks. This causes negative side-effects to other
applications that use the NotifyRegister function.

More Information:

NotifyRegister can install callback functions that are called in
response to events such as the starting and ending of an application,
the loading of a segment, the freeing of a module, and so forth. Only
one callback can be installed per task running in Windows. When more
than one task is running, each can install a notification callback.
Multiple callback functions are called by a chaining mechanism
implemented in TOOLHELP when an event occurs. Callback functions are
called in the order they were installed by the tasks. See the Windows
Software Development Kit (SDK) version 3.1 "Programmer's Reference,
Volume 2: Functions" manual for more information on the NotifyRegister
function.

If a callback routine performs an operation that causes another
notification to be issued, then the callback functions are not called
in the usual chained manner. The problem is not that the callback
routine isn't handling reentrancy; rather, NotifyRegister has not been
implemented to handle callbacks that result in notifications being
issued.
For example, a common procedure is to call OutputDebugString to help
debug an application. However, callback functions installed by the
NotifyRegister function cannot use OutputDebugString because this
function call causes the NFY_OUTSTR notification to be issued. When
OutputDebugString returns, TOOLHELP can't chain on to the next
installed callback function. The result is that only the first
callback is called for the event at which OutputDebugString was
called.

If printing debug messages from the callback routine is desired, call
PostMessage to inform the application of the event, and call
OutputDebugString from the application's window procedure instead of
calling it directly from the callback routine. Using PostMessage is
necessary for the application to perform any operation, not just a
call to OutputDebugString, which causes a notification event to occur.
Incidentally, the documentation states that "the notification callback
function cannot use any Windows function, with the exception of Tool
Helper functions and PostMessage."

Having this type of error in an installed NotifyRegister callback
results in negative side-effects in other applications that use the
NotifyRegister function. Microsoft Visual C++ version 1.0 uses
TOOLHELP notifications as part of the integrated development
environment debugger. If any application is running that has installed

a callback that causes notifications to be issued, calling
OutputDebugString for example, Visual C++ will not be able to initiate
debugging an application. Upon starting to debug, Visual C++ displays
an error message in a dialog box stating:

 DEBUG ERROR: Could not load debuggee. Unknown Error in
 Windows (-22)

Once the application uninstalls the errant callback routine, Visual
C++ can debug without this error.

Additional reference words: msvc s_c c8 8.00
KBCategory:
KBSubcategory: KrThInterrupts

INF: Sample Windows Application to Unload DLLs from Memory
Article ID: Q96312
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

During development, dynamic-link libraries (DLLs) can sometimes be
left in memory with no applications using them. To unload DLLs that
have been left in memory, developers must exit and then restart
Windows, which can be very inconvenient. DLL UNLOADER is a sample
Windows application that lets developers select a DLL, show
information about it, and unload it from the system if desired; this
eliminates the need to restart Windows.

UNLOADER can be found in the Software/Data Library by searching on the
word UNLOADER, the Q number of this article, or S14120. UNLOADER was
archived using the PKware file-compression utility.

More Information:

There are two ways that a DLL can be left in memory after all
applications that use it have exited:

 - The application loads a DLL by calling LoadLibrary and doesn't call
 FreeLibrary to unload it.

 - The application causes a general protection (GP) fault and is
 terminated by Windows.

Either of these occurrences can cause difficulties for developers. For
example:

If a DLL is left in memory with no application using it, and is then
recompiled and executed, the new version of the DLL will not be loaded
because Windows thinks the DLL is already loaded (because the module
names are the same). If you try to debug the DLL with CodeView for
Windows, the source code window will display the latest version's
source code; however, the old version's code, which is still in
memory, will be executed. This version mismatch causes CodeView to
appear to not be working properly. To resolve this problem, you must
either exit and restart Windows or force Windows to unload the old
version of the DLL.

The DLL UNLOADER sample calls ToolHelp to obtain the list of modules
currently loaded in the system. Because this list contains modules
that belong to both DLLs and applications (which are tasks), DLL
UNLOADER filters out the modules that belong to tasks so that they
cannot be unloaded accidentally and cause the system to crash. The
list box stores the module name and handle for each module that
doesn't belong to a task. When the user selects a module, its handle

is used to obtain information about it and/or unload it.

To unload a DLL, DLL UNLOADER first calls GetModuleUsage to retrieve
its usage count and then repeatedly calls FreeLibrary until the usage
count drops to zero; then Windows unloads the DLL. To obtain
information about a DLL, DLL UNLOADER calls ModuleFindHandle and
displays the information in a dialog box.

Finally, DLL UNLOADER creates an .INI file in the directory where its
executable file resides to remember its last position on the screen
before it exits.

Additional reference words: 3.10 CVW TOOLHELP UNLOADER
KBCategory:
KBSubcategory: KrDllUnloadfail KrThModules

INF: MS-DOS Application Characteristics Under Windows
Article ID: Q73668
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

This article discusses the mechanism that the Microsoft Windows
graphical environment uses to run an MS-DOS (non-Windows) application.

More Information:

In the Window environment, each MS-DOS application runs has a Windows
application to act as its agent. When the MS-DOS application is
running in a window under enhanced mode Windows, and the MS-DOS
application makes a call to the display hardware, the agent intercepts
the call and places the character into its window. To the MS-DOS
application, the agent acts as a virtual copy of the display hardware.

Note: The Windows agent does not manage the display; it simply renders
the MS-DOS application's display into a window.

To determine if an application is a MS-DOS application, check the
application's name to see if it matches the name of the MS-DOS
application agent. The module name of the MS-DOS application agent is
WINOLDAP. The following code fragment performs this check:

 BOOL IsThisWOAWindow(HWND hWnd)
 {
 BOOL IsWOA;
 HANDLE hModWOA;

 IsWOA = FALSE;
 if (hModWOA = GetModuleHandle("WINOLDAP"))
 {
 if (hModWOA == (HANDLE)(GetClassWord(hWnd, GCW_HMODULE)))
 {
 IsWOA = TRUE;
 }
 }
 return IsWOA;
 }

To determine how many MS-DOS applications are running at any given
time, call the code above from an loop that enumerates the handles of
all windows in the system.

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrWoaMonitoring

FIX: Program Execution Halted Until Key Press
Article ID: Q70799
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

PROBLEM ID: WIN9103007

SYMPTOMS
 In a Windows MS-DOS window, when a command is invoked and has its
 input redirected to come from a text file, the command does not
 proceed until the user presses a key on the keyboard.

STATUS
 Microsoft has confirmed this to be a problem in Windows version
 3.0. This problem was corrected in Windows version 3.1.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrWoaMisc

PRB: Activating Full-Screen DOS App from Icon in Enhanced Mode
Article ID: Q69895
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

SYMPTOMS
 In Microsoft Windows enhanced mode, when an application calls the
 OpenIcon or ShowWindows functions to activate a full-screen MS-DOS
 application from an icon, the activation fails. These functions
 perform as documented in real and standard mode.

RESOLUTION
 To avoid this problem, simulate the result of an ALT+TAB key
 combination on the MS-DOS application icon: Send a WM_ACTIVATE
 message to the MS-DOS application, and then specify its handle in a
 call to ShowWindow function. For example:

 SendMessage(hDOSApp, WM_ACTIVATE, 1, MAKELONG(hDOSApp, TRUE));
 ShowWindow(hDOSApp, SW_SHOWNORMAL);

 When the application sends the WM_ACTIVATE message, wParam is set
 to 1 because the application is being invoked by simulating the
 keyboard. The high-order word of lParam is set to TRUE (non-zero)
 because the MS-DOS application is represented by an icon.

 The method works in all three Windows modes for windowed and full-
 screen MS-DOS applications.

Additional reference words: 3.00 MICS3 R1.3
KBCategory:
KBSubcategory: KrWoaMonitoring

INF: Calculating Memory Requirements for DOS Applications
Article ID: Q43041

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions 3.1
 and 3.0
--

Summary:

It is extremely difficult for an application to determine in advance
how much memory an MS-DOS (non-Windows) application will require to run.
This data can be estimated under real and standard modes; however,
there is no method to determine this information in enhanced mode.

More Information:

The Windows module WinOldAp is required to run MS-DOS applications. One
complication is that once WinOldAp is in memory, it can run many
applications. In the following table, "PIF Req'd" indicates the amount
of memory required for the application as listed in the corresponding
PIF file and "PIF Des'd" indicates the amount of memory desired by the
application as listed in the corresponding PIF file. The following
table indicates the difference between applications:

 PIF PIF Free Mem Free Mem Memory
 Req'd Des'd Before After Usage
 ----- ----- ------ ----- -----

 160 160 418 155 263 First copy run
 160 160 153 152 1 Second copy run

As this table indicates, the second copy of the application costs
almost no memory. This is because the two copies of the application
share the same memory and are swapped in and out of memory (to disk,
to a RAM drive, or to expanded memory, depending on the WIN.INI
settings).

Another factor is the order in which MS-DOS applications are loaded. The
statistics below demonstrate these differences. In the first case, an
80K program is loaded followed by a 160K program. In the second case,
the 160K program is loaded followed by the 80K program:

Case 1:

 PIF PIF Free Mem Free Mem Memory
 Req'd Des'd Before After Usage
 ----- ----- ------ ----- -----

 80 80 418 244 174 App #1 runs first
 160 160 244 37 207 App #2 runs second
 381 Total memory usage

Case 2:

 PIF PIF Free Mem Free Mem Memory
 Req'd Des'd Before After Usage
 ----- ----- ------ ----- -----

 160 160 418 154 264 App #2 runs first
 80 80 154 153 1 App #1 runs second
 265 Total memory usage

These results are not as unusual as they may appear. In the second
case, the larger application (App #2) is loaded first. This sets the
WinOldAp swapping partition large enough to hold the application. When
the smaller application (App #1) is run, it fits into the existing
partition. In contrast, in the first case, the smaller application is
run first, therefore the swapping area is not set large enough to hold
the larger application. When the larger application is loaded, WinOldAp
must create a completely separate partition to hold it.

The amount of memory needed to run an old application varies,
depending on the following:

1. Whether or not WinOldAp is loaded

2. Whether the existing swap area (if any) is large enough to hold it

3. Whether the application screen is saved in text or graphics mode

4. Whether large-frame, small-frame, or no EMS is in use
 (this variable does not apply to Windows version 3.1)

5. The contents of the Memory Required and Memory Desired fields in
 the PIF file

6. Other factors related to the inner workings of the Windows memory
 manager and the WinOldAp module

These methods are not applicable to enhanced mode Windows. The only
way to determine if a MS-DOS application will run under enhanced mode is
to attempt to run the application and see if the attempt succeeds.
Even this information is not available to another application because
the WinExec return value only indicates that WinOldAp has been
successfully loaded into memory. This value does not contain any
information regarding the real target application.

The handling of this type of problem is addressed by Windows version 3.1.
In Windows version 3.1, the TOOLHELP library can be used to retrieve the
Exit Code of a Windows application. This also works in Windows version
3.0, however, the problem is that WINOLDAP (the MS-DOS application's
Windows agent) for Windows version 3.0 always exits with exit code 0.
Therefore, there is no way to obtain results of the attempted MS-DOS
application run. The version of WINOLDAP included with Windows version
3.1 will exit with the exit code of the MS-DOS application that was run,
or one of the following special values:

;
; Special WINOLDAP exit codes

;
EXIT_NoFile EQU 81h ; Could not start due to file or
 ; directory access problem
EXIT_NoMem EQU 82h ; Could not start due to insufficient
 ; memory
EXIT_Crash EQU 83h ; VM crashed (abnormal termination)
EXIT_BadVer EQU 84h ; Could not start due to bad version
EXIT_ExecFail EQU 85h ; Could not start because MS-DOS EXEC failed
EXIT_TaskAPIFail EQU 86h ; Could not start because task switch API
 ; refused start (standard mode only)

NOTE THAT THESE SPECIAL CODES MAY OVERLAP WITH AN EXIT CODE USED BY
THE MS-DOS APPLICATION. If this happens, there is no way to correct
it other than to change the MS-DOS application to use different exit
codes that do not conflict with these special ones.

ALSO NOTE: The exit code of a .BAT file run is always 0. This is a
property of COMMAND.COM, which is part of MS-DOS.

Additional reference words: 3.00 3.10 3.x
KBCategory:
KBSubcategory: KrWoaMisc

INF: Determining Windows Version, Mode from MS-DOS App
Article ID: Q75338
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.1
--

Summary:

The following assembly language code fragment can be used in an MS-DOS
(non-Windows) application to determine if it is running in a Windows
MS-DOS window, and if so, which version and mode of Windows is
running.

test_win proc near

; check for Windows 3.1

 mov ax,160ah ; WIN31CHECK
 int 2fh ; check if running under Win 3.1.
 or ax,ax
 jz RunningUnderWin31 ; can check if running in standard
 ; or enhanced mode

; check for Windows 3.0 enhanced mode

 mov ax,1600h ; WIN386CHECK
 int 2fh
 test al,7fh
 jnz RunningUnderWin30Enh ; enhanced mode

; check for 3.0 WINOLDAP

 mov ax,4680h ; IS_WINOLDAP_ACTIVE
 int 2fh
 or ax,ax ; running under 3.0 derivative?
 jnz NotRunningUnderWin

; rule out MS-DOS 5.0 task switcher

 mov ax,4b02h ; detect switcher
 push bx
 push es
 push di
 xor bx,bx
 mov di,bx
 mov es,bx
 int 2fh
 pop di
 pop es
 pop bx
 or ax,ax
 jz NotRunningUnderWin ; MS-DOS 5.0 task switcher found

; check for standard mode Windows 3.0

 mov ax,1605h ; PMODE_START
 int 2fh
 cmp cx,-1
 jz RunningUnderWin30Std

; check for real mode Windows 3.0

 mov ax,1606h ; PMODE_STOP
 int 2fh ; in case someone is counting
 ; Real mode Windows 3.0 is running
 jmp NotRunningUnderWin

RunningUnderWin30Std:

 ; Standard mode Windows 3.0 is running
 jmp NotRunningUnderWin

RunningUnderWin31:

 ; At this point: CX == 3 means Windows 3.1 enhanced mode
 ; CX == 2 means Windows 3.1 standard mode
 jmp NotRunningUnderWin

RunningUnderWin30Enh:

 ; Enhanced mode Windows 3.0 is running

NotRunningUnderWin:

 ret

test_win endp

Additional reference words: 3.10 3.1
KBCategory:
KBSubcategory: KrWoaMisc

INF: Keeping a DOS Window Active Under Standard and Real Mode
Article ID: Q75433
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

When a DOS (non-Windows) application running in a DOS window is in the
process of performing "critical" activity (such as asynchronous
network communication), switching away from the application could
result in the loss of data or a system crash. Under standard mode and
real mode Windows, a DOS application can prevent Windows from
switching away from it. This scheme can also be used by an application
run before Windows is started to prevent switching away from a DOS
application.

To implement this method, an application hooks interrupt 6Fh. Before
switching away from a DOS application, Windows makes an int 6Fh call
with the AX register set to 204h. This call is made if any application
has hooked int 6Fh. If the AX register contains 0 on return from the
interrupt, the switch is allowed; otherwise, the switch is prevented.

This technique can cause problems if the only applications that hook
int 6Fh that are running in the system do not use this convention. In
that case, no switching will be allowed. To avoid this situation, the
int 6Fh call can be disabled from the SYSTEM.INI file. In the
[NonWindowsApp] section, a TaskSwitchInt6f=OFF entry disables the int
6Fh.

Although this method can be used by an application running under the
MS-DOS 5.0 task switcher, a full-fledged application programming
interface related to switching has been implemented. These functions
would be much more useful for applications.

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrWoaMonitoring

INF: Determining What Mode and Version of Windows Is Running
Article ID: Q75943
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

An MS-DOS (non-Windows) application can determine whether it is
running within an MS-DOS session under Windows. This article provides
an assembly language program that demonstrates how this can be
accomplished.

More Information:

The following code determines whether Windows is running; if Windows
is running, the code determines what mode Windows is in and what
version of Windows is running.

Sample Code

.MODEL LARGE

.CODE
 public _iswin
;
; Procedure to determine if in Windows or not.
; (From "Microsoft Systems Journal," March 1991, page 113)
; 0: Windows not running
; 1: Windows/386 2.x is running
; 3: Windows 3.x is in 386 enhanced mode
; 4: Windows 4.x is in 386 enhanced mode
; 127: Windows/386 2.x is running
; 128: Windows 3.0 is in real mode
; 255: Windows 3.0 is in standard mode
;
_iswin PROC FAR

 MOV AX,4680H ;Is Windows 3.0 running?
 INT 2FH
 XOR AL,80H
 MOV CL,AL
 MOV AX,1600H ;Is Windows 3.x 386 enhanced mode
 INT 2FH ;running?
 AND AL,7FH
 OR AL,CL
 CMP AL,80H
 JZ T1 ;Not Windows enhanced mode.

 ; Windows enhanced mode is running. At this point,
 ; AL contains the major version number of Windows
 ; and AH contains the minor version number.
 ; However, for this example, only the major version

 ; number is used.
 JMP GOHOME ;Windows Enhanced, Go Home

T1: MOV AX,1605H ;Simulate Initialization.
 XOR BX,BX
 MOV ES,BX
 XOR SI,SI
 MOV DS,SI
 XOR CX,CX
 MOV DX,0001H ;MS-DOS extender
 INT 2FH ;Windows real or Windows standard
 CMP CX,+00
 JNZ T2

 MOV AX,1606H ;Simulate exit
 INT 2FH
T2: MOV AL,80H
 OR AL,CL

GOHOME:
 MOV AH,4CH
 INT 21H
_iswin ENDP
 END

Additional reference words: 3.0
KBCategory:
KBSubcategory: KrWoaMisc

INF: Full-Screen DOS Apps Slow Timer Messages in Enhanced Mode
Article ID: Q76390

--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows versions
 3.0 and 3.1
--

Summary:

In 386 enhanced mode, Windows system timer (WM_TIMER) messages are
generated less often when a DOS application runs full-screen with its
PIF file specifying background execution than when the same DOS
application runs in a window.

When a full-screen DOS application is running, Windows does not need
to track the mouse and update the screen. Therefore, Windows runs with
a low priority in the background. Windows applications receive fewer
WM_TIMER messages because the number of timer ticks that Windows
receives decreases from 18.2 per second to 2 per second or even fewer.

More Information:

Windows's 386 enhanced mode architecture and display mechanism account
for the way that WM_TIMER messages behave when DOS applications are
running.

First of all, WM_TIMER messages are not guaranteed to be sent exactly
at a specified time; they may be sent any time after the specified
time has elapsed. For example, a WM_TIMER message set for 60
milliseconds may be sent at exactly 60 milliseconds, or it may be sent
more than two minutes later. WM_TIMER messages behave this way because
they have the lowest priority of any Windows message. Applications
receive WM_TIMER messages only after all other messages in the system
have been processed (that is, when all message queues are empty).

In 386 enhanced mode, Windows uses a virtual machine architecture that
sets up a virtual machine (VM) for each DOS application. Windows is
essentially a DOS application and creates a VM for itself called the
System VM. The System VM runs Windows and all Windows applications;
each DOS application receives a separate VM.

Virtual machines act similar to 8086 processors with additional
privileged instructions provided by the 80386 processor's virtual-8086
mode. Virtual-8086 mode differs from real mode in that it has memory
protection, virtual memory, and privilege-checking mechanisms. Each
virtual machine also has an optional protected-mode portion. The
System VM uses its protected mode portion to run Windows applications.

The Windows Virtual Machine Manager (VMM) controls the multitasking of
the virtual machines; it manages memory, CPU execution time, and
device coordination. The VMM runs in the 80386 processor's 32-bit flat

memory model along with Windows virtual devices (VxDs), and
preemptively schedules the virtual machines.

Foreground virtual machines running DOS applications always receive
18.2 timer ticks each second so that the VM looks exactly like a
stand-alone 8086 machine. When the System VM is in the foreground, it
(and Windows) receives 18.2 timer ticks per second as well.

Background virtual machines do not receive 18.2 timer ticks per
second; they receive 2 or fewer ticks per second because the VMM
reduces their relative priorities. As a result, the foreground VM can
run faster.

When the System VM is in the background and a full-screen DOS
application is in the foreground, Windows receives fewer timer ticks,
and therefore runs slower than normal. Windows applications process
their messages slower, causing WM_TIMER messages to be delayed.

Windowed DOS applications behave differently from full-screen DOS
applications. Windows creates a special agent application, WINOLDAP,
to run windowed DOS applications. WINOLDAP's job is to place all
output from a DOS application into the client area of a window.
Windows controls all parts of the display, including the area of the
windowed DOS application, and tracks the mouse pointer.

Under such circumstances, Windows is running in the background with a
high priority. The windowed DOS application is running in the
foreground in a VM. The VMM preemptively multitasks the VMs so that
the DOS application can run and Windows can manage the screen. Because
the System VM has a high priority, it receives more timer ticks per
second than other background VMs. Windows and Windows applications,
therefore, process more messages, which allows WM_TIMER messages to be
sent more often.

Even though background VMs receive fewer timer ticks per second, they
still receive time slices according to their relative priorities.

Note: This article applies to DOS applications that have a PIF file
set for background execution. If the DOS application is running full-
screen in the foreground with its PIF file set to exclusive
processing, all other applications, including Windows, will be
suspended, just as if the DOS application were run under Windows in
standard mode. If the DOS application runs in a window with exclusive
processing set, then Windows does not get suspended because it must
manage the screen output for the DOS application.

Additional reference words: 3.00 3.10
KBCategory:
KBSubcategory: KrWoaMisc

INF: Requested Contents for Windows Problem Reports
Article ID: Q51503
--
The information in this article applies to:

 - Microsoft Windows Software Development Kit for Windows version 3.0
--

Summary:

This article describes Microsoft's preferred format for submitting
problem reports on Windows. Using this format will help us to
understand the precise context of your problem report, enabling us to
provide better answers to you and more helpful problem reports to our
development staff.

More Information:

Your problem report should be structured as follows:

 SEVERITY:
 ENVIRONMENT:
 DESCRIPTION:
 CONFIGURATION:
 Hardware:
 Drivers:
 Software:
 DEBUG INFORMATION:

Each of these sections is described below:

SEVERITY: 1, 2, 3, or 4. Use the following guidelines for severity:

 1 Critical -- Software does not work at all (crashes) or causes
 loss/corruption of data. Any situation where the system hangs or
 requires a cold or warm boot.

 2 Major -- A feature/function does not operate as designed. Any
 command or function that produces incorrect results or renders a
 portion of the product unusable.

 3 Minor -- Problems are generally minor in nature and do not
 prevent program from running (spelling errors, screen display
 errors, and so forth), or the results are misleading and/or
 difficult for the user to understand.

 4 Enhancement -- Problem is a design or feature fault that can be
 addressed in a future release.

ENVIRONMENT:
WINDOWS REAL or 286 PROTECT or 386 PROTECT release Version x.xx

 (Include debug info line from the bottom right of screen, if

 applicable)

DESCRIPTION:
Below is a description of the "ideal" problem report. The best problem
reports are clear, complete, and concise. These are some points that
will make it easier to track problem reports and enter them in our
problem database.

The report should state the steps necessary to reproduce the problem,
the results, and (if available) a summary of the debug output. Try to
include enough information that we can reproduce the problem here, but
also try to keep the reports concise.

The configuration should be at the end of the problem report so that
people reading the report can get the gist of the problem without
having to wade through information that may not be relevant (but the
information is there in case it is relevant).

CONFIGURATION:
Hardware: CPU/Memory/Monitor/keyboard/printer/modem/etc.
Drivers: Installed device drivers
Software: TSRs/Network drivers/etc.

DEBUG INFORMATION:
The following is a sample of debug output that can be helpful in
locating a problem:

GENERAL PROTECTION VIOLATION
CS=0EED SS=0F35 DS=0F35 ES=OOOO FS=0000 GS=0000
 -- NV UP EI PL NZ NA PE NC
0EED:00000387 MOV AL,BYTE PTR AL,BYTE PTR [BX]
 DS:23D0=INV:0003
ln
No symbols found

.dg cs
004D: 0063p CODE NOTEPAD (0EEE) 1065,103D
103D: 01FFp CODE USER (05BE) 104D,102D
1165: 0061p CODE GDI (03AE) 101D,100D
115D: 001Bp FREE 009D,0075
07B5: 000Bp CODE KEYBOARD (018E) 035D,0FE5

Additional reference words: 3.00
KBCategory:
KBSubcategory: KrWoaMonitoring

